Drug-Induced Liver Injury After COVID-19 Vaccine

Authors: Monitoring Editor: Alexander Muacevic and John R AdlerRupinder Mann,1Sommer Sekhon,2 and Sandeep Sekhon3 Cureus. Published onlined doi: 10.7759/cureus.16491 PMCID: PMC8372667PMID: 34430106

Abstract

The first case of coronavirus disease 2019 (COVID-19) was reported in December 2019 in China. World Health Organization declared it a pandemic on March 11, 2020. It has caused significant morbidity and mortality worldwide. Persistent symptoms and serious complications are being reported in patients who survived COVID-19 infection, but long-term sequelae are still unknown. Several vaccines against COVID-19 have been approved for emergency use around the globe. These vaccines have excellent safety profiles with few reported side effects. Drug-induced hepatotoxicity is mainly seen with different drugs or chemicals. There are only a few reported cases of hepatotoxicity with vaccines. We present a case of liver injury after administration of the vaccine against the COVID-19 infection.

Introduction

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) causing coronavirus disease 2019 (COVID-19) emerged in December 2019 in Wuhan, China, resulting in an ongoing pandemic [1]. To date, it has caused more than 173 million cases and over 3.7 million death worldwide as per World Health Organization [2]. Although the respiratory system is the most common system affected by this disease, it affects multiple organ manifestations [3]. Despite international efforts to develop treatments for this disease, there are still limited therapeutic options available with remdesivir as the only Food and Drug Administration-approved drug [4]. Given the rapid spread, high morbidity, and mortality worldwide, a coordinated effort led to developing the vaccine in a year of first diagnosed case. Multiple COVID vaccines have been developed at an unprecedented rate. These vaccines have excelled safety and efficacy profiles [57]. The most common adverse effects reported with these vaccines included mild effects like pain at the vaccine site, fever, fatigue, headache, arthralgia, myalgia, lymphadenopathy, and severe effects like anaphylactic reaction [8]. Drug-induced hepatotoxicity is a common adverse event seen with prescription and nonprescription drugs [9]. There are few reported hepatotoxicity cases due to vaccines, namely anti-rabies vaccination-induced hepatotoxicity and autoimmune hepatitis due to influenza virus and hepatitis A and B vaccines [1017]. We report a case of liver injury after receiving the COVID vaccine.Go to:

Case presentation

A 61-year-old female with a known history of irritable bowel disease and cholecystectomy presented to the emergency department with generalized weakness, body aches, dry heaving, and a low-grade temperature of 99.9 Fahrenheit. The patient received a second dose of the Pfizer COVID-19 vaccine nine days before the start of symptoms. She was noted to have conjunctival icterus, mild generalized abdominal tenderness without guarding, or rigidity on physical examination. On admission, the patient’s vitals were stable except for tachycardia with a heart rate between 90 and 110 beats/min.

Laboratory analysis was remarkable for elevated alkaline phosphatase (ALP) of 207 U/L, total bilirubin of 6.2 mg/dL, direct bilirubin of 3.9 mg/dL, white blood cell (WBC) count of 17.2 x 109/L, and mildly elevated aspartate transaminase of 37 U/L (Table ​(Table11 and Figure 1). Abdominal ultrasound showed increased echogenicity within the liver compatible with fatty infiltrates, and common duct diameter was measured to be 6 mm. At the same time, CT of the abdomen with contrast showed no acute abnormalities. The patient was admitted to the hospital and started on empiric antibiotics for presumed cholangitis. Gastroenterology consultation was obtained. Magnetic resonance cholangiopancreatography without contrast showed no filling defect within the biliary duct, status post cholecystectomy, bile duct diameter within a normal range, and unremarkable liver. The patient remained afebrile, WBC trended down, and abdominal pain improved over the course of the hospital stay. Given these findings, infectious disease specialist recommended discontinuing antibiotics. Antibodies to liver/kidney microsomal type 1, smooth muscle, anti-mitochondrial, alpha-1 antitrypsin came back negative, and, additionally, ceruloplasmin, antinuclear antibody, alpha-fetoprotein, and viral serologies for hepatitis A, B, and C came back negative (Table ​(Table2).2). Liver biopsy showed minimal pallor suggesting slight edema along with scattered inflammatory cells consisting of small lymphocytes, scattered polymorphonuclear leukocytes, and few eosinophils, no evidence of florid duct lesion on interface hepatitis, and no evidence of fibrosis on trichrome and reticulin stain. 

Table 1

Liver function tests trend

DateAspartate transaminase (U/L)Alanine transaminase (U/L)Total bilirubin (mg/dL)Alkaline phosphate (U/L)Albumin (g/dL)
4/6/201816201913.7
1/29/202137376.22073
1/30/202128306.51813
1/31/202120225.72084.4
2/1/202120223.62543.1
2/2/202129203.62932.8
2/3/202136223.33673.1
2/4/202134202.53483
2/5/2021291923292.8
2/6/202130201.73662.9
2/19/202135251.22313.9
3/9/202124160.91624.1
4/8/2021151111304.1
6/2/202114111.3964.1

Open in a separate window

Table 2

Immunologic and infectious work-up for liver disease

TestResults
Gamma-glutamyl transpeptidase103 U/L (1-24 U/L reference range)
Hepatitis A IgM antibodyNegative
Hepatitis B surface antigenNegative
Hepatitis B core IgM antibodyNegative
Hepatitis C antibodyNegative
Anti-liver/kidney microsomal antibodyNegative (≤20 = negative, reference range)
Ferritin975.2 ng/mL (10.0-291.0 reference range)
Antinuclear antibody reflexNegative
Smooth muscle antibodyNegative
Anti-mitochondrial antibodyNegative (≤20 = negative, reference range)
Ceruloplasmin38 mg/dl (18-53 mg/dL reference range)

Open in a separate window

Figure 1

An external file that holds a picture, illustration, etc.
Object name is cureus-0013-00000016491-i01.jpg

Graphs showing liver function test trends

Given that all work-up for infection, autoimmune diseases, and any obstruction came back negative, the patient’s clinical picture and laboratory findings were attributed as a liver injury due to the COVID-19 vaccine. Her liver function levels continued to trend down, and she was discharged from the hospital after a week of hospitalization. On the patient’s follow-up with a gastroenterologist, abdominal pain was resolved, and her liver function test values normalized (Table ​(Table11 and Figure ​Figure11).Go to:

Discussion

Drug-induced hepatotoxicity leads to nearly 10% of all cases of acute hepatitis and more than 50% cases of liver failure [18]. It is one of the common reasons for the withdrawal of medications from the market and modification of use [19]. It can be either type A (predictable), dose-related and short latent period in days, or type B (idiosyncratic), dose-independent, unpredictable, and variable latency [20,21]. Based on population-based studies, drug-induced liver injury incidence varies between 13.9 and 19.1 cases per 100,000 people per year [22,23]. Patients have either hepatocellular injury (three times upper limit of transaminase in comparison to ALP), cholestatic injury (three times increase in ALP comparison to transaminase), or mixed pattern (where both ALP and aminotransferase are three times upper limit) [2426]. Most patients improve spontaneously after the removal of the offending drug. If acute liver failure (ALF) is suspected, early liver transplant referral is important due to high ALF mortality [25,27]. From the spontaneous reports from patients who received Pfizer/BioNTech BNT162b2 mRNA in the UK between 9/12/20 and 26/05/2021, there are reports of 45 patients having abnormal liver function analysis and three patients having drug-induced liver injury [28].

In this case, the review of medications and history did not reveal any other reason for hepatotoxicity. She also denied the use of any over-the-counter medications or supplements. Although it is rare with vaccination, the COVID-19 vaccine is likely the cause of hepatotoxicity in our patient based on a diagnosis of exclusion. In this case, the patient had a cholestatic pattern with elevated ALP and bilirubin with mild elevation in the transaminases.

Pfizer/BioNTech BNT162b2 mRNA trial included only 0.6% (217/37,706) patients with liver disease. Among patients with liver disease, 214 were with mild liver disease and only three with moderate to severe liver disease. This patient has underlying fatty liver disease. It is unclear if that was a likely risk factor for hepatotoxicity in this case [5].  Although only a small number were included in trials for Pfizer/BioNTech BNT162b2 mRNA, Moderna mRNA-1273, and the AstraZeneca/University of Oxford ChAdOx1-nCoV-19 chimpanzee adenovirus vector vaccine, both the American Association for Study of Liver Diseases and European Association for the Study of Liver recommend vaccination against SARS-COV-2 with these highly effective and safe vaccines, given a greater risk of health consequences from SARS-COV-2 infection in these patients [29,30].

Hepatotoxicity can occur with vaccines, even though it is more common with prescription and nonprescription drugs. So, the clinician should be watchful in patients showing clinical signs and symptoms after a vaccine.Go to:

Conclusions

In summary, we presented a case of liver injury after the COVID-19 vaccine. We attributed the cause of liver injury to the COVID-19 vaccine, given no other cause in our patient after extensive work-up. There are reports of drug-induced liver injury and abnormal liver function analysis from the spontaneous reports from patients who received Pfizer/BioNTech BNT162b2 mRNA COVID-19 vaccine in the UK. The purpose of this manuscript is to raise awareness of potential side effects; it should not alter the recommendation of healthcare providers regarding vaccinations.Go to:

Notes

The content published in Cureus is the result of clinical experience and/or research by independent individuals or organizations. Cureus is not responsible for the scientific accuracy or reliability of data or conclusions published herein. All content published within Cureus is intended only for educational, research and reference purposes. Additionally, articles published within Cureus should not be deemed a suitable substitute for the advice of a qualified health care professional. Do not disregard or avoid professional medical advice due to content published within Cureus.

References

1. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lu R, Zhao X, Li J, et al. Lancet. 2020;395:565–574. [PMC free article] [PubMed] [Google Scholar]

2. WHO Coronavirus Disease (COVID-19) Dashboard. [Jun;2021 ];https://covid19.who.int/ 2021

3. Coronavirus disease (COVID-19): comprehensive review of clinical presentation. Mehta OP, Bhandari P, Raut A, Kacimi SEO, Huy NT. Front Public Health. 2020;8:582932. [PMC free article] [PubMed] [Google Scholar]

4. NIH: COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. [Jun;2021 ];https://www.covid19treatmentguidelines.nih.gov/ 2021

5. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. Polack FP, Thomas SJ, Kitchin N, et al. N Engl J Med. 2020;383:2603–2615. [PMC free article] [PubMed] [Google Scholar]

6. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Voysey M, Clemens SAC, Madhi SA, et al. Lancet. 2021;397:99–111. [PMC free article] [PubMed] [Google Scholar]

7. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. Baden LR, El Sahly HM, Essink B, et al. N Engl J Med. 2021;384:403–416. [PMC free article] [PubMed] [Google Scholar]

8. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines. Meo SA, Bukhari IA, Akram J, Meo AS, Klonoff DC. Eur Rev Med Pharmacol Sci. 2021;25:1663–1669. [PubMed] [Google Scholar]

9. Drug-induced liver injury: a review. Kosanam S, Boyina R. Int J Pharmacol Res. 2014;5 [Google Scholar]

10. The elevation of liver enzymes due to Hepatitis B vaccine. Önlen Y, Savaş L, Özer B, İris NE. Eur J Gen Med. 2006;3:197–200. [Google Scholar]

11. Autoimmune hepatitis following influenza virus vaccination: two case reports. Sasaki T, Suzuki Y, Ishida K, Kakisaka K, Abe H, Sugai T, Takikawa Y. Medicine (Baltimore) 2018;97:0. [PMC free article] [PubMed] [Google Scholar]

12. Vaccine-related autoimmune hepatitis: the same disease as idiopathic autoimmune hepatitis? Two clinical reports and review. van Gemeren MA, van Wijngaarden P, Doukas M, de Man RA. Scand J Gastroenterol. 2017;52:18–22. [PubMed] [Google Scholar]

13. Hepatitis A vaccine associated with autoimmune hepatitis. Berry PA, Smith-Laing G. World J Gastroenterol. 2007;13:2238–2239. [PMC free article] [PubMed] [Google Scholar]

14. Vaccination as a triggering event for autoimmune hepatitis. Perumalswami P, Peng L, Odin JA. Semin Liver Dis. 2009;29:331–334. [PubMed] [Google Scholar]

15. Vaccination-induced autoimmune hepatitis. Veerappan GR, Mulhall BP, Holtzmuller KC. Dig Dis Sci. 2005;50:212–213. [PubMed] [Google Scholar]

16. Acute exacerbation of autoimmune hepatitis induced by Twinrix. Csepregi A, Treiber G, Röcken C, Malfertheiner P. World J Gastroenterol. 2005;11:4114–4116. [PMC free article] [PubMed] [Google Scholar]

17. Anti-rabies vaccination induced hepatotoxicity – a case report. Rajegowda RY, Nanjappa NB, Muthahanumai NK. Int J Basic Clin Pharmacol. 2016;5:2280–2282. [Google Scholar]

18. Drug-induced liver injury caused by adalimumab: a case report and review of the bibliography. Frider B, Bruno A, Ponte M, Amante M. Case Reports Hepatol. 2013;2013:406901. [PMC free article] [PubMed] [Google Scholar]

19. Idiosyncratic drug hepatotoxicity. Kaplowitz N. Nat Rev Drug Discov. 2005;4:489–499. [PubMed] [Google Scholar]

20. Drug-induced liver injury. Kaplowitz N. Clin Infect Dis. 2004;38 Suppl 2:0–8. [PubMed] [Google Scholar]

21. Diagnosis, management and prevention of drug-induced liver injury. Verma S, Kaplowitz N. Gut. 2009;58:1555–1564. [PubMed] [Google Scholar]

22. Incidence of drug-induced hepatic injuries: a French population-based study. Sgro C, Clinard F, Ouazir K, et al. Hepatology. 2002;36:451–455. [PubMed] [Google Scholar]

23. Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland. Björnsson ES, Bergmann OM, Björnsson HK, Kvaran RB, Olafsson S. Gastroenterology. 2013;144:1419-25, 1425.e1-3; quiz e19-20. [PubMed] [Google Scholar]

24. Drug-induced liver injury. Fisher K, Vuppalanchi R, Saxena R. Arch Pathol Lab Med. 2015;139:876–887. [PubMed] [Google Scholar]

25. Drug-induced liver injury. Katarey D, Verma S. Clin Med (Lond) 2016;16:0–9. [Google Scholar]

26. Idiosyncratic DILI: analysis of 46,266 cases assessed for causality by RUCAM and published from 2014 to early 2019. Teschke R. Front Pharmacol. 2019;10:730. [PMC free article] [PubMed] [Google Scholar]

27. Acute liver failure induced by idiosyncratic reaction to drugs: challenges in diagnosis and therapy. Tujios SR, Lee WM. Liver Int. 2018;38:6–14. [PMC free article] [PubMed] [Google Scholar]

28. print C-mPBva. 2021. All UK Spontaneous Reports Received Between 9/12/20 and 26/05/21 for mRNA Pfizer/BioNTech Vaccine Analysis Print. [Google Scholar]

29. AASLD Expert Panel consensus statement: vaccines to prevent COVID-19 infection in patients with liver disease. Fix OK, Blumberg EA, Chang KM, et al. Hepatology. 2021 [PMC free article] [PubMed] [Google Scholar]

30. EASL position paper on the use of COVID-19 vaccines in patients with chronic liver diseases, hepatobiliary cancer and liver transplant recipients. Cornberg M, Buti M, Eberhardt CS, Grossi PA, Shouval D. J Hepatol. 2021;74:944–951. [PMC free article] [PubMed] [Google Scholar]

Dr. Robert Malone: ‘Rotten to the Core’ FDA Knew COVID Vaccines Could Spur Viral Reactivation, But Said Nothing

Authors:  Debra Heine May 17, 2022

American Greatness

The Food and Drug Administration (FDA) was aware early on that the COVID vaccines could spur viral reactivation of diseases like the varicella-zoster virus (shingles) in some people, but chose not to disclose it, according to renowned vaccinologist and physician Dr. Robert Malone.

“They knew about the viral reactivation,” Malone declared during a recent panel discussion hosted by Del Bigtree with fellow Global COVID Summit physicians Dr. Ryan Cole, and Dr. Richard Urso.

Malone, the original inventor of mRNA and DNA vaccination technology, explained that he had been “very actively engaged” with senior personnel at the FDA in the Office of the Commissioner when the vaccines were being rolled out. The group, he noted, included Dr. William DuMouchel, the Chief Statistical Scientist for Oracle Health Sciences.

“We were talking by Zoom on a weekly or twice a week basis,” he said, regarding the early data on what risks were associated with vaccines.

“This is the group that first discovered the signal of the cardiotoxicity, the doctor continued. “They also knew at that time—one of them actually had the adverse event early on of shingles. They knew that the viral reactivation signal—which the CDC has never acknowledged—was one of the major known adverse events.”

Malone told the panel that it was a mistake to assume that the CDC and FDA—because they stayed silent—were unaware of the risk of viral reactivation associated with the vaccines.

“They absolutely did know, and they did not acknowledge it. It’s another one of those things that is inexplicable,” he said.

Malone pointed out that there are supposed to be strict rules in place for clinical researchers developing “these types of products.”

“You have to characterize where it goes, how long it sticks around, and how much protein it makes, or what the active drug product is. None of that stuff was done very well. It wasn’t done rigorously, and there was a series of misrepresentations about what the data were,” he said. “And the thing is, the FDA let them get away with it. They did not perform their function. They’re supposed to be independent gatekeepers.”

Normally, he pointed out, the FDA pays close attention to the the process, and if there are any red flags, the research is halted.

“What happened here is the regulatory bodies gave the pharmaceutical industry a pass,” Dr. Malone said, adding that Big Pharma also “misrepresented key facts about their product.”

“On the basis of that, average docs just assumed that this was something that it wasn’t. They assumed that this was a relatively benign product that didn’t stick around in the body. All of that is false,” he said.

“Many of us have been wracking our brains as you have to understand how this could possibly happen, why it’s possibly happening, and why is our regulatory apparatus, which we as physicians had all come to assume had a function that actually did the job that we could believe in and trust, and what we find out now is the whole house of cards is rotten to the core,” Malone concluded.

On May 11, the Global COVID Summit, a symposium of 17,000 other physicians and medical scientists from around the world, released its fourth declaration demanding that the state of medical emergency be lifted, scientific integrity restored, and crimes against humanity addressed.

COVID policies imposed over the past two years “are the culmination of a corrupt medical alliance of pharmaceutical, insurance, and healthcare institutions, along with the financial trusts which control them,” the signatories declare. “They have infiltrated our medical system at every level, and are protected and supported by a parallel alliance of big tech, media, academics and government agencies who profited from this orchestrated catastrophe.”

This “corrupt alliance” continues, they state,  “to advance unscientific claims by censoring data, and intimidating and firing doctors and scientists for simply publishing actual clinical results or treating their patients with proven, life-saving medicine.”

“These catastrophic decisions came at the expense of the innocent, who are forced to suffer health damage and death caused by intentionally withholding critical and time-sensitive treatments, or as a result of coerced genetic therapy injections, which are neither safe nor effective,” the signatories said.

The Centers for Disease Control and Prevention (CDC) on Friday released new data showing a total of 1,261,149 reports of adverse events following COVID-19 vaccines that were submitted between Dec. 14, 2020, and May 6, 2022, to the Vaccine Adverse Event Reporting System (VAERS).

According to the data, there was a total of 27,968 reports of deaths in that time frame, and 228,477 serious injuries.

Despite these alarming safety signals, the FDA on Tuesday approved of a booster dose of the Pfizer-BioNTech COVID-19 shot for children 5 through 11 years of age, even though research shows that the shots provide no benefit to children, and can, in fact, cause serious adverse effects and death.

More of the vaccinated and boosted landing in hospital with COVID-19

Authors: By Ariel Hart Zachary Hansen May 19. 2022 – The Atlanta Journal-Constitution

Doctors say it’s caused by a combination of a variant that can escape the vaccine’s effects and the most vulnerable also being the most vaccinated

As summer once again brings signs of a coming COVID-19 wave, an unusual trend has emerged: The Georgians who are fully vaccinated and boosted are increasingly winding up in the hospital with serious COVID-19 symptoms.

The phenomenon points to two changes in the unpredictable pandemic battleground more than two years in. The circulating omicron variant has become better at evading the vaccine, which was designed on the first version of coronavirus to appear in China. And the people most likely to get boosted are those who were most vulnerable to begin with: the elderly, or patients with pre-existing conditions. Despite the extra vaccine protection, those people remain the most vulnerable.

Even in light of the unexpected hospitalizations of those vaccinated and boosted, doctors say it’s still true that boosted groups are the least likely to die.

“I’ve had several older patients who have been boosted and had the vaccine,” said Dr. William Cleveland, a nephrologist in southwest Atlanta. “They get hospitalized, and they had to have some significant medical attention, but they get discharged. And I know that just because of their frailty, without having had the vaccine they would not have survived.”

The rate of hospitalizations for boosted Georgians fell again this week, but still remains higher than the rate of hospitalizations for those with only the primary vaccine series (2 shots). The fact that boosted patients’ hospitalizations nearly outstripped all others even for one week was an unprecedent moment in the pandemic. In the past, hospitalization rates for unvaccinated groups have drastically outnumbered those who have taken the vaccine — sometimes tenfold.

The trend emerged at the tail-end of the omicron variant outbreak and has accelerated over the past two months, setting off alarm bells for state public health experts already expecting a surge in cases this summer.

Dr. Eva Lee, director of the Center for Operations Research in Medicine and Healthcare at Georgia Tech, agreed that the rate of hospitalizations among boosted people was on track to outpace other populations. However, she said it’s not a sign of vaccines losing all effectiveness — it has to do with who is choosing to get boosted.

“A big part of the people that are boosted are also the ones that are really at high risk already to begin with, right?” Lee said. “But what has remained and hasn’t changed is the following: The people that are at risk remain at risk. That means the people that are immune-compromised and the people that are like the elderly people, and people who have coexisting conditions, their risk is still higher.”

Growing number of breakthroughs

Overall, the number of people hospitalized with COVID remains at or near the lowest rate since the beginning of the pandemic. But state data shows that the most protected and least protected groups are starting to find themselves fighting for their lives in Georgia hospitals at nearly the same levels.

According to Georgia Department of Public Health data, unvaccinated groups were being hospitalized due to COVID at twice the rate of other populations at the beginning of March. By the end of April, there were 1.3 hospitalizations per 100,000 vaccinated and boosted Georgians compared to 1.6 hospitalizations for every 100,000 unvaccinated Georgians.https://datawrapper.dwcdn.net/qtaSR/1/

In addition to at-risk groups being more likely to get every shot available to them, omicron and its subvariants have presented a challenge for the U.S.’s current vaccines. Breakthrough cases of less serious illness are now common, and health experts warn they are a sign of the vaccines’ waning immunity.

“Prior to Omicron we could, with a booster, assume there was well over 90-95% vaccine effectiveness vs severe disease,” Eric Topol, founder and director of the Scripps Research Translational Institute in New York, wrote in a recent column sounding the alarm for a summer surge in COVID-19 infections. “It is clear, however, from multiple reports … that this level of protection has declined to approximately 80%, particularly taking account the more rapid waning than previously seen. That represents a substantial drop-off.”

The growing number of breakthrough cases has prompted national health officials to discuss reformulating the current vaccines to specifically target omicron and its subvariants. The U.S. Food and Drug Administration has a meeting scheduled for June 28 to evaluate vaccine efficiency and composition.

Georgia hasn’t seen any noticeable uptick in COVID-19 deaths, but death reports often lag behind increasing hospitalization rates by several weeks.

While health experts are troubled by the rising hospitalization rates, they emphasize that COVID’s death toll would already be on the rise if the most at-risk Georgians weren’t vaccinated and boosted.

Surprised to still be alive

Raymond Fain knew he couldn’t risk getting COVID-19. Given he has kidney disease, the 58-year-old made sure to not only get fully vaccinated but he took a Pfizer booster shot to boot.

Just two months later, during the onslaught of the omicron variant this winter, he was shocked to be told that in spite of his vaccinations he caught COVID. What followed was a bad sickness and two rounds of hospitalization that totaled nearly a month. But at the end of it, came another surprise: He lived.

“I was sort of shocked that that disease that I caught didn’t overcome me with, the failed kidneys. You know what I’m saying?” Fain said.

Cleveland works with Fain’s doctor, both of whom have pleaded with their kidney patients to get vaccinated. Cleveland is all too familiar with kidney patients who get COVID and don’t make it. He’s heard all the excuses, and he’s ready to counter them.

“I’ve seen so much of that (kidney patients succumbing to COVID) that I do not hesitate to try to explain to my patients that I’ve just seen this too many times to to be comfortable with them saying that they are afraid,” Cleveland said.

The percentage of Georgia residents who’ve been vaccinated is among the lowest in the country — the peach state currently ranks 45th. The state’s booster adoption rate is even worse, with less than half of all fully vaccinated people choosing to get one booster dose.

There’s also a large age disparity among those getting boosted. Nearly 60% of all Georgia seniors, people 65 and older, have gotten a booster dose, but there’s a stark drop-off for younger populations. Only about 15% of 25- to 34-year-old Georgians are boosted.

The low booster adoption rate for younger people, who are less likely to be at a high risk of life-threatening infections, is an explanation for why boosted groups seem to be hospitalized at higher rates, health experts said.https://datawrapper.dwcdn.net/KYHdI/1/

“All such people need to have vaccination and booster coverage but our (Centers for Disease Control and Prevention) has failed to convey their life-saving impact from the get go…” Topol wrote in his column. “That’s why we have 31% of Americans who had had 1 booster shot whereas most peer countries are double that proportion.”

For Fain, he’s surprised he was able to pull through his severe bout with COVID and get back on his feet, but his friends and loved ones haven’t let him forget how close he was to death.

“Everybody’s going to talk to me now, they say, ‘Boy when you started, we thought you was going to get gone. You sounded so bad,’” Fain said. “Yeah, but everything is okay now. I’m strong.”

Latest CDC Data Shows FULLY Vaccinated Children Have Higher Covid Infection Rates Than Unvaccinated Children

Authors:  Julian Conradson Published May 18, 2022  The Gateway Pundit

As the Biden Administration green-lights another experimental jab of mRNA for 5-11-year-olds, the latest CDC data reveals children of that age have a higher Covid infection rate than their unvaccinated peers. In other words, kids who are jabbed are more likely to catch Covid, which also means the vaccinated are spreading the virus more than the unvaccinated.

So, these kids must take their boosters… Must be that dang science again.

According to the latest CDC data, children aged 5-11 have been contracting Covid at a higher rate if they have been fully vaccinated since February, which is the first time the agency recorded more vaccinated Covid cases than unvaccinated.

On Feb. 12, the CDC reported a weekly case rate among fully vaccinated children aged 5-11 of 250.02 per 100,000, compared to 245.82 among the unvaccinated children in the same age group.

Although the vaccines were billed as and promised to be ‘effective,’ they definitely aren’t living up to being anything close to it. Since February, the infection rate among vaccinated children remained higher through the third week of March, which is the latest available data published – and things are trending in the wrong direction.

As of March, the difference in the case rates has nearly doubled, with the most recent numbers showing a -11 gap (36.23 per 100,000 [vaxxed] / 26.98 per 100,000[unvaxxed]).

The breakdown of the case rate for 5-11-year-olds between Feb. and Mar. is as follows:

February 19: 136.61 per 100,000 [vaxxed] / 120.63 per 100,000[unvaxxed]

February 26: 71.81 per 100,000 [vaxxed] / 61.52 per 100,000[unvaxxed]

March 5: 56.67 per 100,000 [vaxxed] / 40.61 per 100,000[unvaxxed]

March 12: 42.56 per 100,000 [vaxxed] / 28.75 per 100,000[unvaxxed]

March 19: 36.23 per 100,000 [vaxxed] / 26.98 per 100,000[unvaxxed]

The Biden Administration and the FDA authorized the experimental vaccine for children in this age group in November of 2021. In just three short months, enough children had become vaccinated and the case rate flipped. Any protection the jab provided quickly wore off, making the fully vaccinated children more susceptible to and more likely to spread the virus than the unvaccinated.

In all, there are over 28 million children aged 5-11 in the United States. Unfortunately, a whopping ~8 million of them (or 28.8%) have been fully vaccinated already, according to the Mayo Clinic. Not only is the virus proven to be effectively non-lethal for children, especially ones of this young age (99.995% or higher recovery rate), but the experimental vaccine has proven to have negative effectiveness – aka higher infection rate – across multiple age groups.

In addition to the poor results, the mRNA vaccine has been directly linked to serious and life-threatening side effects that have become prevalent in the wake of its rollout. Most concerningly of which – myocarditis – is popping up at an unprecedented rate in otherwise healthy children and young people all across the world. According to heart experts like Dr. Peter McCullough, who is the most published Cardiologist in the world, “an extraordinary number of young individuals that are going to have permanent heart damage” because of this experimental jab. 

Keep in mind, Fauci, Biden, and the rest of the tyrannical public health bureaucracy just Ok’d boosters for 5-11-year-olds. Considering everything that’s publicly available, let alone what the federal government has compiled, this is beyond criminal. How much more data is needed to pull these shots off the market?

Association of Prior BNT162b2 COVID-19 Vaccination With Symptomatic SARS-CoV-2 Infection in Children and Adolescents During Omicron Predominance

Authors: Katherine E. Fleming-Dutra, MD1Amadea Britton, MD1,2Nong Shang, PhD1et al May 13, 2022 JAMA. Published online May 13, 2022. doi:10.1001/jama.2022.7493

Key Points

Question  Does the estimated effectiveness of 2 doses of the BNT162b2 COVID-19 vaccine against symptomatic SARS-CoV-2 Omicron variant infection (based on the odds ratio for the association of prior vaccination and infection) wane rapidly among children and adolescents, as has been observed for adults?

Findings  In a test-negative, case-control study conducted from December 2021 to February 2022 during Omicron variant predominance that included 121 952 tests from sites across the US, estimated vaccine effectiveness against symptomatic infection for children 5 to 11 years of age was 60.1% 2 to 4 weeks after dose 2 and 28.9% during month 2 after dose 2. Among adolescents 12 to 15 years of age, estimated vaccine effectiveness was 59.5% 2 to 4 weeks after dose 2 and 16.6% during month 2; estimated booster dose effectiveness in adolescents 2 to 6.5 weeks after the booster was 71.1%.

Meaning  Among children and adolescents, estimated vaccine effectiveness for 2 doses of BNT162b2 against symptomatic infection decreased rapidly, and among adolescents increased after a booster dose.Abstract

Importance  Efficacy of 2 doses of the BNT162b2 COVID-19 vaccine (Pfizer-BioNTech) against COVID-19 was high in pediatric trials conducted before the SARS-CoV-2 Omicron variant emerged. Among adults, estimated vaccine effectiveness (VE) of 2 BNT162b2 doses against symptomatic Omicron infection was reduced compared with prior variants, waned rapidly, and increased with a booster.

Objective  To evaluate the association of symptomatic infection with prior vaccination with BNT162b2 to estimate VE among children and adolescents during Omicron variant predominance.

Design, Setting, and Participants  A test-negative, case-control analysis was conducted using data from 6897 pharmacy-based, drive-through SARS-CoV-2 testing sites across the US from a single pharmacy chain in the Increasing Community Access to Testing platform. This analysis included 74 208 tests from children 5 to 11 years of age and 47 744 tests from adolescents 12 to 15 years of age with COVID-19–like illness who underwent SARS-CoV-2 nucleic acid amplification testing from December 26, 2021, to February 21, 2022.

Exposures  Two BNT162b2 doses 2 weeks or more before SARS-CoV-2 testing vs no vaccination for children; 2 or 3 doses 2 weeks or more before testing vs no vaccination for adolescents (who are recommended to receive a booster dose).

Main Outcomes and Measures  Symptomatic infection. The adjusted odds ratio (OR) for the association of prior vaccination and symptomatic SARS-CoV-2 infection was used to estimate VE: VE = (1 − OR) × 100%.

Results  A total of 30 999 test-positive cases and 43 209 test-negative controls were included from children 5 to 11 years of age, as well as 22 273 test-positive cases and 25 471 test-negative controls from adolescents 12 to 15 years of age. The median age among those with included tests was 10 years (IQR, 7-13); 61 189 (50.2%) were female, 75 758 (70.1%) were White, and 29 034 (25.7%) were Hispanic/Latino. At 2 to 4 weeks after dose 2, among children, the adjusted OR was 0.40 (95% CI, 0.35-0.45; estimated VE, 60.1% [95% CI, 54.7%-64.8%]) and among adolescents, the OR was 0.40 (95% CI, 0.29-0.56; estimated VE, 59.5% [95% CI, 44.3%-70.6%]). During month 2 after dose 2, among children, the OR was 0.71 (95% CI, 0.67-0.76; estimated VE, 28.9% [95% CI, 24.5%-33.1%]) and among adolescents, the OR was 0.83 (95% CI, 0.76-0.92; estimated VE, 16.6% [95% CI, 8.1%-24.3%]). Among adolescents, the booster dose OR 2 to 6.5 weeks after the dose was 0.29 (95% CI, 0.24-0.35; estimated VE, 71.1% [95% CI, 65.5%-75.7%]).

Conclusions and Relevance  Among children and adolescents, estimated VE for 2 doses of BNT162b2 against symptomatic infection was modest and decreased rapidly. Among adolescents, the estimated effectiveness increased after a booster dose.Introduction

In December 2021 and January 2022, the spread of the SARS-CoV-2 Omicron variant led to the highest rates of COVID-19 cases among children 5 to 15 years old1 and the highest rate of pediatric hospitalizations (age ≤17 years) with COVID-19 to this point in the pandemic.2,3 Randomized trials of the BNT162b2 mRNA COVID-19 vaccine (Pfizer-BioNTech), the only COVID-19 vaccine authorized for use in children and adolescents 5 to 15 years of age, were conducted before the emergence of the Omicron variant and demonstrated high efficacy of 2 doses against COVID-19 (100% and 91% among those aged 12-15 and 5-11 years, respectively).4,5 The US Food and Drug Administration issued Emergency Use Authorization for BNT162b2 (2 doses of 30 μg) for those aged 12 to 15 years on May 10, 2021,6 and for those aged 5 to 11 years (2 doses of 10 μg) on October 29, 2021.7 Evidence that estimated vaccine effectiveness (VE) waned over time among adults and adolescents8 contributed to a recommendation on January 5, 2022, for a booster (30-μg dose) 5 months or more after the second dose for adolescents 12 to 15 years old.9

Observational studies in adults documented lower protection from mRNA vaccines against the Omicron variant compared with the Delta variant and rapid waning of protection.10,11 However, observational estimates of VE among children 5 to 11 years old and adolescents 12 to 15 years old during Omicron variant predominance are lacking but needed to inform COVID-19 vaccine policy and use of nonpharmaceutical interventions in these age groups. The objectives of this analysis were to use the odds ratio (OR) for the association of prior vaccination and symptomatic infection to estimate BNT162b2 VE during Omicron variant predominance of (1) 2 doses among children 5 to 11 years old and adolescents 12 to 15 years old over time since the second dose and (2) 3 doses among adolescents 12 to 15 years old.Methods

This activity was determined to be public health surveillance as defined in 45 CFR §46.102(l) (US Department of Health and Human Services [HHS], Title 45 Code of Federal Regulations, §46 Protection of Human Subjects); thus, it was not submitted for institutional review board approval and informed consent was not needed.Data Source

Data from the Increasing Community Access to Testing (ICATT) platform were used. ICATT is an HHS program that contracts with 4 commercial pharmacy chains to facilitate drive-through SARS-CoV-2 testing nationally.8,10,12,13 No-cost testing is available to anyone regardless of symptom or exposure status, and sites were selected to address COVID-19 health disparities by increasing access in racially and ethnically diverse communities and areas with moderate to high social vulnerability based on the Social Vulnerability Index (SVI).14 During the analysis period, contracted pharmacy chains used different versions of the registration questionnaire and not all captured data on booster doses. This analysis was, therefore, limited to a single chain, which collected data on booster doses and provided 82% of tests platform-wide for children and adolescents aged 5 to 15 years during the analysis period.

When registering for SARS-CoV-2 testing, individuals or parents/guardians of minors answered a questionnaire (available in English or Spanish) to self-report demographic information (including race and ethnicity selected from fixed categories, shown in the Table), COVID-19–like illness symptoms (fever, cough, shortness of breath, recent loss of sense of smell or taste, muscle pain, fatigue, chill, headache, sore throat, congestion or runny nose, vomiting, or diarrhea; reported to HHS as asymptomatic or symptomatic with ≥1 symptom), and vaccination status.10 Race and ethnicity were collected as part of the HHS COVID-19 laboratory reporting requirements.15 Self-reported COVID-19 vaccination data included number of doses received up to 4, and for each dose, vaccine product and month and year received. For doses reported in the same month or the month before test registration, the registrant was asked whether the most recent dose was administered at least 2 weeks before the test date. Reporting of vaccination status was neither mandatory nor verified. Test registrants were also asked to self-report underlying health conditions, including immunocompromising conditions (defined in the questionnaire as “immunocompromising medications, solid organ or blood stem cell transplant, HIV, or other immunocompromising conditions”), and whether they had previously tested positive for SARS-CoV-2 (within 90 days and/or >90 days before test registration); answers were not verified.

Nasal swabs were self-collected at drive-through sites and tested for SARS-CoV-2 either onsite with the ID Now (Abbott Diagnostics Scarborough Inc) rapid nucleic acid amplification test (NAAT) or at contracted laboratories using laboratory-based NAAT (TaqPath COVID-19 Combo Kit [Thermo Fischer Scientific Inc] or COVID-19 RT-PCR Test [Laboratory Corporation of America]). Deidentified questionnaire data, specimen collection date, test type, test result, and testing site location and census tract SVI14 were reported to HHS with an approximate 3-day lag.Study Design

A test-negative, case-control analysis16 was conducted to estimate BNT162b2 VE against symptomatic infection. This analysis used rapid and laboratory-based NAATs from children and adolescents aged 5 to 15 years reporting 1 or more symptoms tested at the pharmacy chain from December 26, 2021, to February 21, 2022 (data downloaded February 22, 2022). The unit of analysis was tests, because unique identifiers for individuals were not available. Cases were defined as those with positive SARS-CoV-2 NAAT results, and controls were those with negative NAAT results. Tests from children and adolescents meeting any of the following criteria were excluded: indeterminate test results, missing assay type, reported an immunocompromising condition (because COVID-19 vaccine recommendations differ for these individuals),9 unknown vaccination status, vaccine product other than BNT162b2, receipt of 1 vaccine dose or receipt of the second or third dose within 2 weeks of the test date, vaccination before the month of the recommendation by the Advisory Committee on Immunization Practices (for children 5-11 years, November 2021; for adolescents 12-15 years, May 2021 for the primary series and January 2022 for the booster dose),9,17,18 receipt of more than the authorized number of doses for nonimmunocompromised individuals (>2 for children 5-11 years, >3 for adolescents 12-15 years), receipt of a third dose less than 4 months after the second dose (for adolescents 12-15 years),9 or inconsistent vaccination information (eg, reported vaccine receipt but missing dose dates, reported no vaccine receipt but doses reported).Exposure

The exposures of interest were 2 BNT162b2 doses for children 5 to 11 years old and 2 or 3 BNT162b2 doses for adolescents 12 to 15 years old. Cases and controls were considered unvaccinated if tests were from children and adolescents who received no COVID-19 vaccine before the SARS-CoV-2 test. Cases and controls were considered vaccinated with 2 or 3 doses if tests were from children and adolescents who reported receiving the second or third dose 2 weeks or more before their SARS-CoV-2 test.Outcome

The outcome measure was symptomatic SARS-CoV-2 infection determined by positive NAAT result in a person reporting COVID-19–like illness.Statistical Analysis

Associations between symptomatic SARS-CoV-2 infection and BNT162b2 vaccination were estimated by comparing the odds of prior vaccination with 2 or 3 doses (exposed) vs no vaccination (unexposed) in cases vs controls using multivariable logistic regression. The OR was used to estimate VE, where VE = (1 – OR) × 100%. Logistic regression models were adjusted for calendar day of test (continuous variable), race, ethnicity, sex, testing site region, and testing site census tract SVI (continuous variable).14 Tests with missing sex and site census tract SVI were not included in adjusted analyses. Unknown race and ethnicity were coded as categorical levels within each variable to retain those tests in regression models.

Adjusted OR and corresponding VE of 2 doses were estimated by age group (5-11 years and 12-15 years) and month since the second dose. Because only vaccination month and year but not exact calendar dates of each dose were reported, month since the second dose was calculated as the difference between the month and year of testing and the month and year of the second vaccine dose (at least 2 weeks after the second dose). The range of possible days after the second dose for month 0 was 14 to 30 days; month 1, 14 to 60 days; month 2, 30 to 90 days; month 3, 60 to 120 days, and so on (assuming 30 days per month). Because of potential imprecision of month since vaccination based on calendar month of vaccination and testing rather than exact dates, a simulation analysis (of scenarios with rapid vs slow vaccine uptake and varying date of vaccine introduction) and an analysis of previously published data from this platform8 were conducted to compare VE estimates using this approach with those with exact number of days since the second dose (eAppendix in the Supplement).

The maximum difference between calendar month of SARS-CoV-2 test and calendar month of the second dose was 3 months for children 5 to 11 years old (tested during February 2022 and second dose received in November 2021) and 9 months for adolescents 12 to 15 years old (tested during February 2022 and second dose received in May 2021). However, VE was not calculated for the last month since the second dose (month 3 for children and month 9 for adolescents) because the number of possible days since the second dose was limited in the last month. This was a result of both the timing of vaccine authorization (children became eligible for second doses in late November 202118 and adolescents in late May 202117) and by the timing of the end of the study period (test dates were only included through February 21, 2022) (eAppendix in the Supplement). For adolescents 12 to 15 years of age, the maximum possible time after a booster was 6.5 weeks (tested February 21, 2022, and booster dose received after recommendation by the Advisory Committee on Immunization Practices on January 5, 2022).9

To assess the effect of reported prior SARS-CoV-2 infection on estimated 2-dose VE (by age group and month since the second dose), 3 sensitivity analyses were conducted. The first analysis included only tests from individuals without any reported prior SARS-CoV-2–positive test result. The second analysis included only tests from individuals without reported prior SARS-CoV-2–positive test result within 90 days, because a recent prior positive test result could have been due to prolonged NAAT positivity,19 multiple tests within the same illness episode (eg, confirming an at-home test), or reinfection with a different variant in the setting of Omicron variant emergence. The third analysis included only tests from individuals without reported prior SARS-CoV-2–positive test result more than 90 days prior to the test date, because prior SARS-CoV-2 infection provides infection-induced immunity in both vaccinated and unvaccinated individuals.20

The adjusted OR and corresponding VE of 3 doses among adolescents 12 to 15 years old were estimated overall (ie, not by month since the second dose) due to the short timeframe (6.5 weeks) since booster recommendation.

Statistical analyses were performed in R (version 4.1.2; R Foundation) and SAS (version 9.4; SAS Institute Inc). OR and VE estimates were presented with 95% CIs. To compare the waning pattern for estimated VE since the second dose between children and adolescents, an interaction term between age group (5-11 vs 12-15 years) and month after the second dose (for months 0, 1, and 2) was added to the model; a likelihood ratio test comparing the models with and without the interaction term was used to evaluate the interaction. Two-sided P values comparing the magnitude of the association of vaccination and infection between the 2 age groups and across study months were estimated; a P value less than .05 was considered significant. Because of the potential for type I error due to multiple comparisons, findings should be interpreted as exploratory.Results

A total of 121 952 tests from children and adolescents aged 5 to 15 years at 6897 sites across 49 states (all states except North Dakota), Washington, DC, and Puerto Rico, met inclusion criteria (Figure 1), including 53 272 cases (43.7%) and 68 680 controls (56.3%). The median age among individuals with included tests was 10 years (IQR, 7-13); 61 189 (50.2%) were female, 75 758 (70.1%) were White, and 29 034 (25.7%) were Hispanic/Latino. Among 74 208 included tests from children 5 to 11 years old, 58 430 (78.4%) were from unvaccinated children and 15 778 (21.3%) from those vaccinated with 2 doses. Among 47 744 included tests from adolescents 12 to 15 years old, 24 767 (51.9%) were from unvaccinated adolescents, 22 072 (46.2%) from those vaccinated with 2 doses, and 905 (1.9%) from those with booster doses.

Included tests were more frequently rapid NAAT (66.3%) than laboratory-based NAAT (33.7%), and controls were more often tested by rapid NAAT than cases (70.5% vs 60.2% for children; 71.5% vs 60.8% for adolescents) (Table). Cases vs controls were more often tests from persons from the South Atlantic region (27.6% vs 22.3% for children; 27.9% vs 23.7% for adolescents). Report of prior positive SARS-CoV-2 test result within 90 days of the test date was more common among cases than controls (22.0% vs 13.0% for children; 21.1% vs 15.5% for adolescents), while report of a positive test result more than 90 days before the test date was less common among cases than controls (4.9% vs 11.1% for children; 6.5% vs 13.4% for adolescents).

Among children 5 to 11 years old, the adjusted OR for symptomatic infection for tests performed during month 0 after the second dose was 0.40 (95% CI, 0.35-0.45; estimated VE, 60.1% [95% CI, 54.7%-64.8%]) and during month 2 after the second dose was 0.71 (95% CI, 0.67-0.76; estimated VE, 28.9% [95% CI, 24.5%-33.1%]) (Figure 2). For adolescents 12 to 15 years old, the adjusted OR during month 0 after the second dose was 0.40 (95% CI, 0.29-0.56; estimated VE, 59.5% [95% CI, 44.3%-70.6%]), during month 2 after the second dose was 0.83 (95% CI, 0.76-0.92; estimated VE, 16.6% [95% CI, 8.1%-24.3%]), and was no longer significantly different from 0 during month 3 after the second dose (OR, 0.90 [95% CI, 0.82-1.00]; estimated VE, 9.6% [95% CI, −0.1% to 18.3%]). Estimated VE was not significantly different between children and adolescents during months 0 and 1 after the second dose, but estimated VE in children was significantly higher than in adolescents during month 2 (P value for month 0: .99; month 1: .40; month 2: .01; and for months 0-2 combined: .06).

The simulation analysis showed that estimated VE waning curves that used either the exact number of days or calculated months since the second dose were in close agreement in scenarios with rapid and slow vaccine uptake and vaccine introduction on day 1 and day 16 of month 0 (eFigures 1-2 in the Supplement). The analysis of previously published data from this platform showed estimated monthly VE waning curves aligned well with daily VE waning curves (eFigures 3-4 in the Supplement).

Sensitivity analyses limited to those without any prior SARS-CoV-2–positive test result (eFigure 5 in the Supplement), without prior SARS-CoV-2–positive test result within 90 days of test date (eFigure 6 in the Supplement), and without prior SARS-CoV-2–positive test result more than 90 days prior to test date (eFigure 7 in the Supplement) yielded estimated VE at month 0 of 60.4% to 66.4% among children 5 to 11 years old and 58.3% to 64.3% among adolescents 12 to 15 years old. These were similar to the main analysis results that did not take prior infection into account. However, estimated VE in the sensitivity analyses was somewhat more sustained over time relative to the main analysis, particularly for the model limited to tests from individuals without any reported prior infection (estimated VE among children was 39.8% during month 2; among adolescents, estimated VE was significantly different from 0 until month 7) and the model limited to tests from those without infection within 90 days (estimated VE among children was 39.8% at month 2; among adolescents, estimated VE was significantly different from 0 until month 5).

Among adolescents, the adjusted OR for a booster dose 2 to 6.5 weeks after the dose was 0.29 (95% CI, 0.24-0.35; estimated VE, 71.1% [95% CI, 65.5%-75.7%]).Discussion

This analysis estimated BNT162b2 VE among children 5 to 11 years old and adolescents 12 to 15 years old with COVID-19–like illness tested for SARS-CoV-2 using NAAT at drive-through US pharmacy sites from December 26, 2021, to February 21, 2022. It found the estimated VE of the BNT162b2 2-dose primary series against symptomatic infection with the Omicron variant was modest and decreased over time since vaccination in both age groups, similar to the pattern observed in adults during Omicron variant predominance.10 A booster dose was associated with increased protection against symptomatic infection in adolescents.

Previous analyses among adults have shown lower estimated VE against the Omicron variant than against the Delta variant and waning of mRNA vaccine protection against symptomatic infection, regardless of predominant variant.8,10,11 A recent analysis from the same testing platform as this analysis demonstrated the estimated VE of the 2-dose BNT162b2 primary series against symptomatic Omicron infection among adults 18 years or older was 42% at 2 to 4 weeks after the second dose. This decreased to not significantly different from 0 by 3 months after the second dose.10 In this analysis, the estimated VE against symptomatic infection among adolescents 12 to 15 years old also was not significantly different from 0 during month 3 after the second dose. Among children 5 to 11 years old, the duration of protection could only be assessed up through month 2 since the second dose, and continued monitoring will be important.

Among adolescents 12 to 15 years old, the estimated VE against symptomatic infection increased after a booster dose. This finding is consistent with data on adults from this platform and from other studies among adults and adolescents during Omicron variant predominance, which provide evidence of increased protection following mRNA vaccine booster dose.10,21,22 Given the well-established pattern of waning mRNA VE after 2 doses and early evidence of waning of booster dose protection in adults,22 monitoring the duration of protection from booster doses in adolescents will be important. Booster doses may be needed to optimize protection against symptomatic infection with the Omicron variant in children 5 to 11 years old as well.

Children aged 5 to 11 years receive a lower-dose formulation (10 μg) of BNT162b2 than adolescents and adults (30 μg), and limited observational data are available on VE with the 10-μg dose. In this analysis, the similar starting VE among children and adolescents and slower waning seen in children than adolescents suggest the 10-μg dose performed as well or better in children than the 30-μg dose in adolescents. These findings are consistent with the phase 2-3 trial in which immunogenicity of the 10-μg dose among children 5 to 11 years old, as measured by geometric mean titers of neutralizing antibodies 1 month after the second dose, was not significantly different from that generated by 30 μg in persons 16 to 25 years old.4 Furthermore, recent studies indicate estimated 2-dose BNT162b2 VE is similar among children 5 to 11 years old and adolescents 12 to 15 years old against any Omicron infection with or without symptoms (31% and 59%, respectively, with overlapping CIs)23 and against emergency department and urgent care visits due to COVID-19 (51% among children 5-11 years vs 45% among adolescents 12-15 years, with overlapping CIs).21

Prior SARS-CoV-2 infection may influence estimated VE in various ways. Unvaccinated persons with prior infection may have infection-induced immunity, which could bias VE estimates toward the null, whereas vaccinated persons with prior infection may have higher levels of protection than those with vaccination alone.20 Additionally, the proportion of the population with prior infection and how protective prior infection from a previous variant is against currently circulating variants can also influence estimated VE. The sensitivity analysis including only children and adolescents without any reported prior infection showed that waning of estimated VE was less pronounced than in the main analysis, which may provide the clearest picture of protection provided by vaccination. However, prior SARS-CoV-2 infection is increasingly common; the estimated SARS-CoV-2 infection–induced antibody seroprevalence among US children 0 to 17 years old who had blood specimens tested at commercial laboratories (for reasons unrelated to COVID-19) was 45% in December 2021.24 Although history of SARS-CoV-2 infection was self-reported in this analysis and is an imperfect measure, 27% of tests were from persons reporting prior infection. Thus, inclusion of tests from persons with prior infection may more accurately reflect vaccine performance under current conditions in the US.

Although estimated VE against symptomatic infection waned quickly in this analysis, vaccine protection against symptomatic infection is harder to achieve than protection against severe disease. For mRNA vaccines including BNT162b2, estimated VE against severe disease and hospitalization has been higher and waned more slowly than estimated VE against infection among adolescents and adults during Delta predominance25 and Omicron predominance.21,22 While estimated VE against symptomatic infection is an important end point to inform nonpharmaceutical intervention policy decisions and can provide an early warning signal of declining VE, estimated VE against severe disease is needed for children and adolescents during Omicron variant predominance.Limitations

This analysis is subject to several limitations. First, vaccination status was self-reported, which may lead to misclassification. Second, approximately 12% of tests were from people who did not report vaccination status, and 8% had missing symptom data. Exclusion of these tests may have biased results. Third, vaccination dose dates were provided as month and year rather than exact calendar date, which could affect the estimated VE over time through imprecise classification of months since vaccination. A simulation analysis and an analysis of previously published data from this platform8 (eAppendix in the Supplement) suggested that the magnitude and patterns of estimated VE over time would be similar when estimated by day or month since second dose and additionally would be robust to different speeds of vaccine uptake and timing of vaccine authorization.

Fourth, person-level identifiers were not available; therefore, the unit of analysis was tests, not individuals. The analysis was restricted to symptomatic children and adolescents tested within a 2-month timeframe, likely reducing the number of individuals contributing multiple tests. Fifth, these data are from children and adolescents who sought testing at ICATT sites and may not be generalizable to the US population. Nonetheless, these data represent a large sample of children and adolescents 5 to 15 years old tested at 6897 sites nationally. Sixth, primary series vaccine coverage among children 5 to 11 years old and booster coverage among adolescents 12 to 15 years old remained low in the US during the time of this study.26 Children who received the primary series and boosted adolescents may differ in meaningful and unmeasured ways from unvaccinated children and unboosted adolescents.

Seventh, due to the short time (6.5 weeks) since adolescents 12 to 15 years old were recommended for a booster dose, this analysis was unable to estimate booster VE over time in adolescents. Eighth, this analysis includes both rapid and laboratory-based NAAT. While there may be slight variation in the sensitivity of assays performed at different laboratories, NAAT, including rapid NAAT, is the most sensitive method available for detection of SARS-CoV-2 infection.27 Simulations of the effect of test sensitivity on influenza VE estimates using the test-negative design suggest that estimated VE remains relatively stable over a range of test sensitivity from 80% to 100%.28Conclusions

Among children and adolescents, estimated VE for 2 doses of BNT162b2 against symptomatic infection was modest and decreased rapidly. Among adolescents, the estimated effectiveness increased after a booster dose.

References1.Centers for Disease Control and Prevention. COVID data tracker: COVID-19 weekly cases and deaths per 100,000 population by age, race/ethnicity, and sex. Accessed January 20, 2022. https://covid.cdc.gov/covid-data-tracker/#demographicsovertime

2.Centers for Disease Control and Prevention. COVID data tracker: new admissions of patients with confirmed COVID-19, United States. Accessed January 20, 2022. https://covid.cdc.gov/covid-data-tracker/#new-hospital-admissions

3.Marks  KJ, Whitaker  M, Anglin  O,  et al; COVID-NET Surveillance Team.  Hospitalizations of children and adolescents with laboratory-confirmed COVID-19: COVID-NET, 14 states, July 2021-January 2022.   MMWR Morb Mortal Wkly Rep. 2022;71(7):271-278. doi:10.15585/mmwr.mm7107e4PubMedGoogle ScholarCrossref

4.Walter  EB, Talaat  KR, Sabharwal  C,  et al; C4591007 Clinical Trial Group.  Evaluation of the BNT162b2 COVID-19 vaccine in children 5 to 11 years of age.   N Engl J Med. 2022;386(1):35-46. doi:10.1056/NEJMoa2116298PubMedGoogle ScholarCrossref

5.Frenck  RW  Jr, Klein  NP, Kitchin  N,  et al; C4591001 Clinical Trial Group.  Safety, immunogenicity, and efficacy of the BNT162b2 COVID-19 vaccine in adolescents.   N Engl J Med. 2021;385(3):239-250. doi:10.1056/NEJMoa2107456PubMedGoogle ScholarCrossref

6.Food and Drug Administration. Pfizer-BioNTech COVID-19 vaccine EUA letter of authorization. Accessed October 4, 2021. https://www.fda.gov/media/144412/download

7.Food and Drug Administration. FDA authorizes Pfizer-BioNTech COVID-19 vaccine for emergency use in children 5 through 11 years of age. Accessed February 25, 2022. https://www.fda.gov/news-events/press-announcements/fda-authorizes-pfizer-biontech-covid-19-vaccine-emergency-use-children-5-through-11-years-age

8.Britton  A, Fleming-Dutra  KE, Shang  N,  et al.  Association of COVID-19 vaccination with symptomatic SARS-CoV-2 infection by time since vaccination and Delta variant predominance.   JAMA. 2022;327(11):1032-1041. doi:10.1001/jama.2022.2068
ArticlePubMedGoogle ScholarCrossref

9.Centers for Disease Control and Prevention. Interim use of COVID-19 vaccines in the United States: interim clinical considerations. Accessed February 11, 2022. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html

10.Accorsi  EK, Britton  A, Fleming-Dutra  KE,  et al.  Association between 3 doses of mRNA COVID-19 vaccine and symptomatic infection caused by the SARS-CoV-2 Omicron and Delta variants.   JAMA. 2022;327(7):639-651. doi:10.1001/jama.2022.0470
ArticlePubMedGoogle ScholarCrossref

11.UK Health Security Agency. COVID-19 vaccine surveillance report: week 6, 10 February 2022. Accessed February 13, 2022. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1054071/vaccine-surveillance-report-week-6.pdf

12.Miller  MF, Shi  M, Motsinger-Reif  A, Weinberg  CR, Miller  JD, Nichols  E.  Community-based testing sites for SARS-CoV-2: United States, March 2020-November 2021.   MMWR Morb Mortal Wkly Rep. 2021;70(49):1706-1711. doi:10.15585/mmwr.mm7049a3PubMedGoogle ScholarCrossref

13.Centers for Disease Control and Prevention. Increasing Community Access to Testing (ICATT) for COVID-19. Accessed February 26, 2022. https://www.cdc.gov/icatt/index.html

14.Agency for Toxic Substances and Disease Registry. CDC/ATSDR Social Vulnerability Index. Accessed September 24, 2021. https://www.atsdr.cdc.gov/placeandhealth/svi/index.html

15.Centers for Disease Control and Prevention. 07/31/2020: Lab advisory: update on COVID-19 laboratory reporting requirements. Accessed January 11, 2022. https://www.cdc.gov/csels/dls/locs/2020/update-on-covid-19-reporting-requirements.html

16.Chua  H, Feng  S, Lewnard  JA,  et al.  The use of test-negative controls to monitor vaccine effectiveness: a systematic review of methodology.   Epidemiology. 2020;31(1):43-64. doi:10.1097/EDE.0000000000001116PubMedGoogle ScholarCrossref

17.Wallace  M, Woodworth  KR, Gargano  JW,  et al.  The Advisory Committee on Immunization Practices’ interim recommendation for use of Pfizer-BioNTech COVID-19 vaccine in adolescents aged 12-15 years: United States, May 2021.   MMWR Morb Mortal Wkly Rep. 2021;70(20):749-752. doi:10.15585/mmwr.mm7020e1PubMedGoogle ScholarCrossref

18.Woodworth  KR, Moulia  D, Collins  JP,  et al.  The Advisory Committee on Immunization Practices’ interim recommendation for use of Pfizer-BioNTech COVID-19 vaccine in children aged 5-11 years: United States, November 2021.   MMWR Morb Mortal Wkly Rep. 2021;70(45):1579-1583. doi:10.15585/mmwr.mm7045e1PubMedGoogle ScholarCrossref

19.Centers for Disease Control and Prevention. Overview of testing for SARS-CoV-2, the virus that causes COVID-19. Accessed March 10, 2022. https://www.cdc.gov/coronavirus/2019-ncov/hcp/testing-overview.html

20.Hall  V, Foulkes  S, Insalata  F,  et al; SIREN Study Group.  Protection against SARS-CoV-2 after COVID-19 vaccination and previous infection.   N Engl J Med. 2022;386(13):1207-1220. doi:10.1056/NEJMoa2118691PubMedGoogle ScholarCrossref

21.Klein  NP, Stockwell  MS, Demarco  M,  et al.  Effectiveness of COVID-19 Pfizer-BioNTech BNT162b2 mRNA vaccination in preventing COVID-19-associated emergency department and urgent care encounters and hospitalizations among nonimmunocompromised children and adolescents aged 5-17 years: VISION Network, 10 states, April 2021-January 2022.   MMWR Morb Mortal Wkly Rep. 2022;71(9):352-358. doi:10.15585/mmwr.mm7109e3PubMedGoogle ScholarCrossref

22.Ferdinands  JM, Rao  S, Dixon  BE,  et al.  Waning 2-dose and 3-dose effectiveness of mRNA vaccines against COVID-19-associated emergency department and urgent care encounters and hospitalizations among adults during periods of Delta and Omicron variant predominance: VISION Network, 10 states, August 2021-January 2022.   MMWR Morb Mortal Wkly Rep. 2022;71(7):255-263. doi:10.15585/mmwr.mm7107e2PubMedGoogle ScholarCrossref

23.Fowlkes  AL, Yoon  SK, Lutrick  K,  et al.  Effectiveness of 2-dose BNT162b2 (Pfizer BioNTech) mRNA vaccine in preventing SARS-CoV-2 infection among children aged 5-11 years and adolescents aged 12-15 years: PROTECT cohort, July 2021-February 2022.   MMWR Morb Mortal Wkly Rep. 2022;71(11):422-428. doi:10.15585/mmwr.mm7111e1PubMedGoogle ScholarCrossref

24.Centers for Disease Control and Prevention. COVID data tracker: nationwide COVID-19 infection-induced antibody seroprevalence (commercial laboratories). Accessed March 9, 2022. https://covid.cdc.gov/covid-data-tracker/#national-lab

25.Tartof  SY, Slezak  JM, Fischer  H,  et al.  Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study.   Lancet. 2021;398(10309):1407-1416. doi:10.1016/S0140-6736(21)02183-8PubMedGoogle ScholarCrossref

26.Centers for Disease Control and Prevention. COVID data tracker: trends in demographic characteristics of people receiving COVID-19 vaccinations in the United States. Accessed February 13, 2022. https://covid.cdc.gov/covid-data-tracker/#vaccination-demographics-trends

27.Food and Drug Administration. In vitro diagnostics EUAs: molecular diagnostic tests for SARS-CoV-2. Accessed March 17, 2022. https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas-molecular-diagnostic-tests-sars-cov-22

8.Jackson  ML, Rothman  KJ.  Effects of imperfect test sensitivity and specificity on observational studies of influenza vaccine effectiveness.   Vaccine. 2015;33(11):1313-1316. doi:10.1016/j.vaccine.2015.01.069PubMedGoogle ScholarCrossref

Pfizer Jab In Young People Only 20% Effective After 60 Days, 0% After 5 Months

Authors:  Zachary Stieber May 14, 2022 The Epoch Times

The Pfizer COVID-19 vaccine turned negatively effective after five months, according to a new study

The Pfizer COVID-19 vaccine turned negatively effective after five months, according to a new study.

Researchers with the U.S. Centers for Disease Control and Prevention (CDC) analyzed test results from sites across the United States and determined that the vaccine was 60 percent effective two to four weeks after 12- to 15-year-olds got the second of the two-dose primary regimen.

But the effectiveness, measured against symptomatic illness, quickly plummeted, hitting 20 percent around month two and zero around month five.

After that, recipients in the age group were more likely to be infected by the disease caused by the CCP (Chinese Communist Party) virus, also known as SARS-CoV-2, the virus causes COVID-19.

Vaccine effectiveness “was no longer significantly different from 0 during month 3 after the second dose,” the researchers wrote in the study, which was published by the Journal of the American Medical Association.

Pfizer, its partner BioNTech, and the CDC didn’t respond to requests for comment.

The analyzed tests were performed between Dec. 26, 2021, and Feb. 21, 2022. Some 47,700 tests among 12- to 15-year-olds were included, with about half being unvaccinated. The testing data was on the Increasing Community Access to Testing, a program funded by the U.S. Department of Health and Human Services that contracts with pharmacy chains to perform drive-through testing. The testing data was supplemented by information in questionnaires filled out by adults with the adolescents.

Limitations of the study included vaccination being self-reported.

The study was funded by the U.S. government.

The study also found that vaccine effectiveness against symptomatic infection plunged quickly for those 5 to 11 years old, starting at 60 percent but hitting 23 percent just one month later.

One way to combat the negative effectiveness, researchers said, was to get a booster dose.

Of the 906 12- to 15-year-olds who got a third, or booster, dose, the effectiveness was measured at 71 percent two to six weeks after receipt.

Other studies, though, show that the protection from a booster, like that from the primary regimen, quickly wanes.

“Given the well-established pattern of waning mRNA VE after 2 doses and early evidence of waning of booster dose protection in adults, monitoring the duration of protection from booster doses in adolescents will be important,” researchers said.

Both the Pfizer and Moderna vaccines are built on messenger RNA (mRNA) technology. VE refers to vaccine effectiveness.

In another study published by the same journal on May 13, New York researchers reported the gap of infection and hospitalization risk between unvaccinated and vaccinated youth narrowing over time, with vaccinated 5- to 11-year-olds being infected at a rate of 62 per 100,000 and unvaccinated being infected at a rate of 70 per 100,000.

That was an incidence rate ratio of 1.1; the rate ratio for 12- to 17-year-olds was 2.

The protection also waned considerably against hospitalization over time, researchers found.

They said that the findings support “efforts to increase vaccination coverage in children and adolescents.”

A Case of Hepatotoxicity After Receiving a COVID-19 Vaccine

Authors: Muath M. AlqarniAmmar Z. FaloudahAmjad S. AlsulaihebiHassan K. HalawaniAbdulmajeed S. Khan Published: December 16, 2021  DOI: 10.7759/cureus.20455


Abstract

The coronavirus disease 2019 (COVID-19) has led to a global health crisis. Its clinical manifestations are well-documented, and severe complications among patients who survived the infection are being continuously reported. Several vaccines with well-established efficacies and excellent safety profiles have also been approved. To date, few side effects of vaccines have been reported. Drug-induced hepatotoxicity is an extremely rare side effect of these vaccines, with few reported instances. In this case report, we describe a patient who experienced hepatotoxicity after receiving the COVID-19 vaccine from Pfizer BioNTech.

Introduction

The coronavirus disease 2019 (COVID-19) has caused an unprecedented global health crisis. Its most common symptoms include fever, cough, fatigue, and myalgia. Rarely, patients may develop an acute respiratory distress syndrome or multiple organ failure [1]. Other conditions, such as liver injury, may occur. Various factors can lead to liver injury, including severe inflammatory responses, severe hypoxia, drug-induced liver injury (DILI), and worsening of pre-existing metabolic conditions [2]. The manifestations of liver injury vary from elevated serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and bilirubin to hepatic dysfunction in severe cases [3]. In May 2020, the Pfizer‐BioNTech COVID‐19 vaccine received emergency authorization for use among adolescents aged 12-15 years [4]. Clinical trials have demonstrated that its efficacy in this age group may be as high as 100%. The vaccine’s side effects are typically mild and non-life-threatening, including headache, fatigue, myalgias, and chills [5]. However, there have been reports on extremely rare yet life-threatening side effects, such as anaphylactic shock, deep venous thromboembolism, and pulmonary embolism [1,6].

Case Presentation

A 14-year-old female, not known to have any chronic illnesses, presented to the emergency department with epigastric pain, diarrhea, nausea, and vomiting for the past four days. Three days prior to her current presentation, the patient received the second dose of the Pfizer/BioNTech BNT162b2 mRNA COVID-19 vaccine. The patient denied the use of any pharmaceutical, herbal, or recreational drugs. Upon arrival to the emergency room, the patient had a temperature of 36.9°C, a pulse rate of 128 bpm, a blood pressure of 90/63 mmHg, a respiratory rate of 18 rpm, and oxygen saturation of 97% on room air. On physical examination, the patient was conscious, oriented, and had a Glasgow coma scale (GCS) score of 15/15. In addition, she had mild epigastric tenderness and jaundice. No signs of chronic liver disease were evident.

On the first day of admission, vital signs returned to normal after resuscitation with intravenous fluids. The patient’s urine was dark as observed after urinary catheter insertion. The hematology panel showed Leukopenia, neutropenia, and lymphopenia among others as seen in Table 1. Biochemical and coagulation profile workups are shown in Table 2. Abdominal ultrasound was unremarkable except for a minimal rim of free fluid in the pelvic cavity. Along with conservative treatment, the patient was started on N-acetylcysteine, lactulose, and Vitamin K. In addition, ceftriaxone was given as an empirical antibiotic. On the second day, the results of AST, ALT, and alkaline phosphatase decreased, yet remained abnormally high (Figures 12).

DateWhite blood cellsNeutrophilsLymphocytesPlateletsTotal bilirubinDirect bilirubin
09/08/20211.670.9 (53.9%)0.68 (40.7%)107121.186.1
10/08/20211.220.58 (47.6%)0.56 (45.9%)107117.981.1
11/08/20211.080.37 (34.3%)0.66 (61.1%)101156.694.3
12/08/20211.250.49(39.2%)0.69 (55.2%)101179.6106.8
13/08/20211.090.53(48.6%)0.53 (48.6%)86213.4122.2
14/08/20211.000.52 (52.0%)0.45 (45.0%)87231.6154.0
15/08/20211.380.72 (52.2%)0.60 (43.5%)83291.4187.5
Table 1: Trend of the complete blood counts and bilirubin

Normal ranges: White blood cells: 4-10 x 109/L, Neutrophils: 2-7×103/µL (40%-75%), Lymphocytes: 1-3.5×103/µL (20%-45%), Platelets: 150-400×103/µL, Total bilirubin: 0-21 µmol/L, Direct bilirubin: 0-3.4 µmol/L

DateProthrombin timeAPTTinternational normalized ratioPotassiumSodium  Ammonia  Creatine  
09/08/202157.953.24.615.53134162.136
10/08/202148.81749.9485.463.97125211.89
11/08/202134.83253.1093.6913.86132156.420
12/08/202125.03050.6022.5163.4113938.826
13/08/202123.93264.2092.3884.6513780.451
14/08/202123.647.51.813.44133125.716
15/08/202115.37142.2981.4293.3313132.511
Table 2: Trends of the chemical and coagulation profiles

Abbreviations: APTT: Activated Partial prothrombin time, INR: international normalized ratio

Normal ranges: Prothrombin time: 11-13 seconds, Partial prothrombin time 28-40 seconds, INR: 0.9-1.2, Potassium: 3.5-5.1 mmol/L, Sodium: 136-145 mmol/L, Ammonia: 11-51 µmol/L

AST-and-ALT-trends
Figure 1: AST and ALT trends

Normal ranges: AST – Aspartate transaminase (0-40 U/L), ALT – Alanine transaminase (0-41 U/L)

Alkaline-phosphatase-and-albumin-trends
Figure 2: Alkaline phosphatase and albumin trends

Normal ranges: Albumin: 39.7-49.4 mmol/L, Alkaline phosphate: 35-104 mmol/L

On the fourth day, the patient became agitated and non-responsive, when assessed, her GCS score dropped to 8/15. Consequently, she was transferred to the intensive care unit, where she was intubated. Consultations from gastroenterology, infectious disease, neurology, and hematology departments were requested. Following this, a wide range of infectious, immunological, and toxicological tests were ordered (Tables 3,4). Nevertheless, all the results were unremarkable. To rule out structural brain pathologies, a brain computed tomography without contrast was performed. A suspicious hypodense lesion in the right temporal lobe was identified. However, the findings from the brain magnetic resonance imaging were unremarkable.

TestResult
Blood culture and sensitivity Negative
Cytomegalovirus immune globulin M (CMV IgM)Negative
Indirect Coombs testNegative
Direct Coombs testNegative
Hepatitis A virus immune globulin M (HAV IgM)Negative
Hepatitis C virus antibodies (enzyme immunoassays) Negative
Hepatitis B surface antigen (HBsAg)Negative
Urine culture and sensitivityNegative
human immunodeficiency virus serology (HIV)Negative
Stool Culture and sensitivityNegative
Chikungunya PCRNegative
Alkhurma virus PCRNegative
Dengue virus PCRNegative
Dengue virus serotypeNegative
Dengue virus IgGNegative
Dengue virus nonstructural protein 1 (NS1)Negative
Dengue virus IgMNegative
Rift valley fever PCRNegative
Anti-Smooth Muscle Antibody (ASMA)Negative
Antinuclear Antibodies (ANA)Negative
Anti-Liver-Kidney Microsomal Antibody (LKM)Negative
Table 3: Immunologic and infectious work-up for liver disease

Abbreviations: Ig: immunoglobulin, PCR: polymerase chain reaction

Name of the tested substanceResult
ParacetamolNegative
Salicylic acidNegative
Narcotic alkaloids and its derivativesNegative
BenzodiazepinesNegative
Barbituric acidNegative
Tricyclic antidepressants Negative
Organophosphorus pesticidesNegative
EthanolNegative
Table 4: Urine and blood toxicology panel

The patient’s level of consciousness returned to normal by the seventh day, her liver enzyme levels continued to decline, and her symptoms have resolved. Afterward, she was transferred to a liver transplant center for further investigation and management.

Discussion

DILI is the most common cause of acute liver injury in developed countries [7]. Its presentation ranges from an incidental elevation of liver enzymes to outright acute liver failure [8]. There are two types of DILI: idiosyncratic and intrinsic. The most common type of which is the intrinsic type that has a short latency period and is dose-dependent. An example of an offending agent in this type is acetaminophen. Contrarily, the idiosyncratic type is less common and has a longer latency. A few examples of idiosyncratic drugs are amoxicillin, nonsteroidal anti-inflammatory drugs, and isoniazid [9]. In our case, we hypothesized the type of DILI to be idiosyncratic, due to the short latency period.

The diagnosis of DILI is made by identifying a relationship between drug exposure and the onset of liver disease. It is important to exclude any infectious, autoimmune, or other forms of liver disease. A thorough medical history and a high clinical suspicion are the basis for a correct diagnosis. A recovery following withdrawal from an offending agent may indicate DILI [10]. A diagnostic criterion that can be utilized in diagnosing DILI is the Rousse Uclaf Causality Assessment Method of the Council of International Organization of Medical Science (RUCAM/CIOMS) [11]. This criterion was applied to our patient’s case, and a total of 6 was calculated, indicating that DILI is probable.

Currently, there is no effective treatment for DILI other than discontinuing the offending drug and providing patients with supportive measures until their condition improves [12]. The exception is acetaminophen intoxication in which an antidote can be used in management, namely N-acetylcysteine. Early transfer of patients with idiosyncratic DILI to tertiary liver centers is important. Liver transplantation increases overall survival from 27.8% to 66.2% [13]. Withholding the transplantation can result in infection, brain damage, organ failure, and even death [14].

There have been three reports of patients having hepatic failure, with one case being acute, after receiving the Pfizer/BioNTech BNT162b2 mRNA vaccine in the United Kingdom between September 12, 2020 and September 4, 2021. Moreover, there have been 17 reported cases of liver injury, with two cases being drug-induced [15]. The possible side effects of the COVID-19 vaccines on the liver are not limited to one type. Two case reports suggested that the ChAdOx1 nCoV-19 vaccine (Oxford-AstraZeneca) may trigger acute autoimmune hepatitis [16]. Mann et al. reported a case of a 61-year-old female who developed generalized weakness and low-grade fever after receiving the second dose of Pfizer/BioNTech BNT162b2 mRNA vaccine. The patient had an ALP of 207 µ/L, total bilirubin of 6.2 mg/dL, direct bilirubin of 3.9 mg/dL, a WBC of 17 x 109, and AST of 37 U/L. All laboratory workup and imaging to investigate possible etiologies were unremarkable. As compared to our case, there were significant differences in age group, initial presentation, and degree of liver injury [17].

Prior to her recent presentation, our patient had no chronic illnesses. Given that her history, physical examination, and laboratory workups were unremarkable, the patient’s clinical picture was attributed to hepatotoxicity secondary to the Pfizer/BioNTech BNT162b2 mRNA vaccine, the only pharmacological agent that she was exposed to before her current presentation.

Conclusions

This is a case of hepatotoxicity in a 14-year-old patient that occurred after receiving the second dose of the Pfizer/BioNTech BNT162b2 mRNA vaccine. The exhaustive clinical and laboratory evaluation failed to establish any other plausible etiology besides the vaccine. The purpose of this report is to raise awareness of this uncommon but potentially life-threatening side effect.


References

  1. Anand P, Stahel VP: Review the safety of Covid-19 mRNA vaccines: a review. Patient Saf Surg. 2021, 15:20. 10.1186/s13037-021-00291-9
  2. Sun J, Aghemo A, Forner A, Valenti L: COVID-19 and liver disease. Liver Int. 2020, 40:1278-81. 10.1111/liv.14470
  3. Jothimani D, Venugopal R, Abedin MF, Kaliamoorthy I, Rela M: COVID-19 and the liver. J Hepatol. 2020, 73:1231-40.
  4. U.S. Food and Drug Administration. Commissioner of the Coronavirus (COVID‐19) Update: FDA Authorizes Pfizer‐BioNTech COVID‐19 Vaccine for Emergency Use in Adolescents in Another Important Action in Fight Against Pandemic. (2021). Accessed: May 10, 2021: https://www.fda.gov/news.
  5. Pfizer: BNT162 RNA-based COVID-19 vaccines. Protocol C4591001. 2020, 1-137.
  6. Wiest NE, Johns GS, Edwards E: A case of acute pulmonary embolus after mRNA SARS-CoV-2 immunization. Vaccines. 2021, 9:903.
  7. Reuben A, Koch DG, Lee WM: Drug-induced acute liver failure: results of a U.S. multicenter, prospective study. Hepatology. 2010, 52:2065-76. 10.1002/hep.23937
  8. Benichou C, Danan G, Flahault A: Causality assessment of adverse reactions to drugs–II. An original model for validation of drug causality assessment methods: case reports with positive rechallenge. J Clin Epidemiol. 1993, 46:1331-6. 10.1016/0895-4356(93)90102-7
  9. Leise MD, Poterucha JJ, Talwalkar JA: Drug-induced liver injury. Mayo Clin Proc. 2014, 89:95-106. 10.1016/j.mayocp.2013.09.016
  10. Sijamhodžić R, Roža N, Debelić MI, Hrstić I: Drug-induced liver injury. US Gastroenterol Hepatol Rev. 2010, 6:73.
  11. Tajiri K, Shimizu Y: Practical guidelines for diagnosis and early management of drug-induced liver injury. World J Gastroenterol. 2008, 14:6774-85. 10.3748/wjg.14.6774
  12. Polson J, Lee WM: AASLD position paper: the management of acute liver failure. Hepatology. 2005, 41:1179-97. 10.1002/hep.20703
  13. Katarey D, Verma S: Drug-induced liver injury. Clin Med (Northfield Il). 201612021, 6:104-9.
  14. Cardoso FS, Marcelino P, Bagulho L, Karvellas CJ: Acute liver failure: an up-to-date approach. J Crit Care. 2017, 39:25-30. 10.1016/j.jcrc.2017.01.003
  15. COVID-19 mRNA Pfizer-BioNTech Vaccine Analysis Print. (2021). Accessed: December 2, 2021: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1039819/COVID-19_mRNA….
  16. Rela M, Jothimani D, Vij M, Rajakumar A, Rammohan A: Auto-immune hepatitis following COVID vaccination. J Autoimmun. 2021, 123:102688. 10.1016/j.jaut.2021.102688
  17. Mann R, Sekhon S, Sekhon S: Drug-induced liver injury after COVID-19 vaccine. Cureus. 2021, 13:e16491. 10.7759/cureus.16491

Growing Number Of COVID-19 Deaths Among Vaccinated People: Federal Data

Authors: Katabella Roberts via The Epoch Times MY 13, 2022

An increasing number of COVID-19 deaths are occurring among individuals in the United States who have been vaccinated, according to federal data.

In August of 2021, roughly 18.9 percent of COVID-19 deaths happened among individuals who were vaccinated, an ABC News analysis of the data shows. Six months later in February 2022, that figure had risen to over 40 percent as the highly-transmissible Omicron variant made its way across the globe.

Similarly, in September 2021, just 1.1 percent of COVID-19 deaths occurred among Americans who had been fully vaccinated and boosted once. Five months later in February, that percentage had jumped to about 25 percent, according to ABC News.

A separate analysis of federal data by CNN shows that in the second half of September 2021—when the Delta variant was at its peak—less than a quarter of all COVID-19 deaths were among individuals who were vaccinated with at least two doses of the Moderna or Pfizer/BioNTech mRNA vaccines or a single dose of the Johnson & Johnson vaccine. However, just months later in January and February as Omicron surged, that figure had jumped to 40 percent.

Some experts believe the increase in deaths among fully vaccinated people or “breakthrough infections” in those who have received all their shots is not overly concerning, saying it is because while more and more people become fully vaccinated, new variants emerge and vaccine protection begins to wane as fewer people continue to get booster shots.

These data should not be interpreted as vaccines not working. In fact, these real-world analyses continue to reaffirm the incredible protection these vaccines afford especially when up to date with boosters,” said John Brownstein, an epidemiologist at Boston Children’s Hospital and an ABC News contributor.

Despite an increasing number of deaths among the vaccinated, the Centers for Disease Control and Prevention (CDC) states that vaccines are safe and effective. Data from the government agency says that overall, the risk of death from COVID-19 is roughly five times higher in unvaccinated individuals than in those who have had at least their initial dose of a vaccine.

However, in some cases, serious adverse events such as thrombosis with thrombocytopenia syndrome (blood clots), myocarditis (inflammation of the heart muscle), and pericarditis (inflammation of the outer lining of the heart) have been documented.

As of May 4, around 257.9 million people in the United States, or 77.7 percent of the total population in the nation have received at least one dose of vaccine, while roughly 219.9 million people, or 66.2 percent of the total U.S. population, have been fully vaccinated.

Around 100.9 million of those who are fully vaccinated have received a booster shot, while 49.4 percent of those eligible for booster shots have not yet had one.

As the Omicron variant swept through the nation, an increasing number of vulnerable, older populations were being hospitalized, and 73 percent of deaths have been among those 65 and older, despite the fact that 90 percent of seniors have had all of their vaccine shots.

However, a large percentage—a third of them—have not yet had their booster jab.

“This trend in increased risk among the elderly further supports the need for community-wide immunization,” Brownstein said. “Older populations, especially those with underlying conditions, continue to be at great risk of severe complications, especially as immunity wanes. The best way to protect them is to make sure everyone around them is fully immunized.”

The data comes a month after pharmaceutical and biotechnology company Moderna said that preliminary results from its study on a COVID-19 vaccine intended to protect against variants showed that it outperformed the company’s currently authorized booster shot, mRNA-1273.

Moderna said on April 19 that its mRNA-1273.211 shot, its first bivalent booster vaccine candidate, showed “superiority” against the Beta, Delta, and Omicron variants of the virus one month after being administered, compared to the booster shot of its original vaccine currently in use.

Autoimmune Hepatitis Following Vaccination for SARS-CoV-2 in Korea: Coincidence or Autoimmunity?

Authors: Seong Hee Kang 1 2Moon Young Kim 1 3Mee Yon Cho 4Soon Koo Baik 1 5Affiliations expandPMID: 35437965PMCID: PMC9015903DOI: 10.3346/jkms.2022.37.e116

J Korean Med Sci 2022 Apr 18;37(15):e116. doi: 10.3346/jkms.2022.37.e116.

Abstract

Autoimmune hepatitis (AIH) is a chronic, autoimmune disease of the liver that occurs when the body’s immune system attacks liver cells, causing the liver to be inflamed. AIH is one of the manifestations of a coronavirus disease 2019 (COVID-19), as well as an adverse event occurring after vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Few cases of AIH have been described after vaccination with two messenger RNA (mRNA)-based vaccines—BTN162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna)—against SARS-CoV-2. Herein, we report a case of AIH occurring after Pfizer-BioNTech COVID-19 vaccine. A 27-year-old female presented with jaundice and hepatomegaly, appearing 14 days after receiving the second dose of Pfizer-BioNTech vaccine. Her laboratory results showed abnormal liver function with high total immunoglobulin G level. She was diagnosed with AIH with histologic finding and successfully treated with oral prednisolone. We report an AIH case after COVID-19 vaccination in Korea.
Go to:Graphical Abstract

INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic, putatively caused by the widespread transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in 257,469,528 laboratory-confirmed cases of infection and 5,158,211 deaths globally as of November 28, 2021.1 Rapid vaccine development, however, has significantly mitigated severe COVID-19 illness. Two messenger RNA (mRNA) COVID-19 vaccines, BNT162b2 (Pfizer-BioNTech, New York, NY, USA/Mainz, Germany) and mRNA-1273 (Moderna, Cambridge, MA, USA), were granted emergency use authorization by the United States Food and Drug Administration in December 2020. SARS-CoV-2 infection has been associated with the development of autoimmune processes.2 Because SARS-CoV-2 harbors the same protein motif the mRNA vaccine codes for, it is plausible that these vaccines could trigger autoimmune diseases in predisposed patients.34 Autoimmune hepatitis (AIH) is a polygenic multifactorial disease that may be triggered by specific environmental factors, such as viral infections, resulting in the loss of self-tolerance to autoantigens in genetically susceptible individuals.5

Go to:CASE DESCRIPTION

We treated a 27-year-old female nurse who developed AIH after COVID-19 vaccination. She had no known history of liver disease and did not use herbal remedies or alcohol. She received a second dose of the Pfizer-BioNTech COVID-19 vaccine on March 30, 2021, and, since April 6, 2021, symptoms of nausea, vomiting, headache, fever, and dark urine continued. Accordingly, she was hospitalized via the emergency room 14 days after COVID-19 vaccination. A COVID-19 polymerase chain reaction test, performed at the local hospital on April 7 and 12, 2021, was negative. The physical examination was unremarkable, except for scleral icterus, jaundice, and palpable hepatomegaly. In the emergency room, laboratory investigations were significant for the following: bilirubin, 8.6 mg/dL; aspartate aminotransferase (AST), 1,004 U/L; alanine aminotransferase (ALT), 1,478 U/L; alkaline phosphatase, 182 U/L, white blood cell count, 6,720/μL (neutrophils, 46.8%); hemoglobin, 13.0 g/dL; platelet count 373,000/μL; blood urea nitrogen/creatinine, < 5.0/0.54 mg/dL (estimated glomerular filtration rate, 145.0 mL/min/1.73 m2); and prothrombin international normalized ratio, 1.1. Laboratory results were negative for hepatitis A, B, C, and E, Epstein-Barr virus, cytomegalovirus, herpes simplex virus types 1 and 2, and human immunodeficiency virus. Antinuclear antibody (ANA) was positive (1:80; mixed pattern). Other antibodies (including anti-mitochondrial, anti-smooth muscle, liver-kidney microsomal, and antineutrophil cytoplasmic antibodies) were negative. Total immunoglobulin G (IgG) level was 1,641 mg/dL (normal range, 549–1,584 mg/dL). Ceruloplasmin, transferrin saturation, thyroid function test, and serum protein electrophoresis were all normal. Abdominal ultrasound revealed splenomegaly (12.5 cm) without cirrhosis and gallbladder wall thickening.

Liver dynamic computed tomography revealed no evidence of biliary lithiasis or biliary dilation, and ultrasound-guided transabdominal liver biopsies were obtained. In microscopic examination, 17 portal tracts were identified. Although there was a focal bridging, the overall lobular architecture was preserved in the low magnification. Some portal tracts were widened by moderate inflammation with periportal fibrosis (Fig. 1). The portal inflammation was composed of mainly lymphocytes, clusters of plasma cells and few eosinophils, extending into proto-lobular interface (interface hepatitis) (Fig. 2A). The immunohistochemical staining for plasma cell markers, MUM1 and CD138 confirmed significant plasma cell infiltration in portal tracts as well as in lobules (Fig. 2B). Diffuse moderate necroinflammatory damage in lobules, associated with perivenular hepatocytes degeneration, mild cholestasis with hepatocytic rosettes (Fig. 2C) and sinusoidal inflammation were found. Other than COVID-19 vaccination, no other drug, herbal supplement, or toxin use were reported by the patient. The revised original score for AIH pretreatment was 18 (results > 15 suggest definite AIH). Treatment with oral prednisolone (40 mg daily) was initiated. Plasma ALT, AST, and total bilirubin levels over time, and before and after treatment, are summarized in Fig. 3. After three weeks of treatment, diarrhea and fever developed, and she was transferred to the hospital’s emergency room. Treatment with prednisolone (20 mg daily) was discontinued with the diagnosis of enteritis. Four days after admission, symptoms were relieved, and she was discharged from hospital with steroid discontinuation. Two weeks after stopping therapy, there were biochemical signs of an AIH relapse; therefore, treatment with oral prednisolone (10 mg daily) was restarted. Liver enzyme levels were completely normalized and the patient’s symptoms significantly improved.


Fig. 1
The microphotograph of low magnification of liver biopsy shows portal widening with periportal fibrosis (A) hematoxylin and eosin ×100, (B) Masson trichrome ×100.Click for larger imageDownload as PowerPoint slide

Fig. 2
Histological finding. (A) The porto-lobular interface shows severe inflammation composed of lymphocytes, clausters of plasma cells (circle) and a few eosinophils. Bile ducts (closed arrow) are not damaged (H&E, ×400). (B) The photomicrography of MUM1 immunohistochemical stain demonstrates numerous plasma cell infiltration (×400). (C) The lobules show diffuse degeneration of hepatocytes, mild cholestasis in hepatocytic rosettes (opened arrow) and sinusoidal lymphoplasma cells infiltration (H&E ×400).
H&E = hematoxylin and eosin.Click for larger imageDownload as PowerPoint slide

Fig. 3
Trends of serum ALT, AST and total bilirubin over time.
ALT = alanine aminotransferase, AST = aspartate aminotransferase.Click for larger imageDownload as PowerPoint slide

We described a case of AIH that developed in a patient after vaccination with the Pfizer-BioNTech COVID-19 vaccine, which was resolved with steroid treatment. To date, four cases of AIH have been reported after Pfizer-BioNTech COVID-19 vaccination in the literature (Table 1)678, the first of which was reported by Bril et al.3 The patient was a 35-year-old woman in her third month postpartum who developed AIH after COVID-19 vaccination. In this case, AIH exhibited some atypical features: autoantibodies other than ANA were negative and eosinophils were present on liver histology. Similarly, Lodato et al.6 reported a case of AIH occurring after vaccination, with no development of autoantibodies and eosinophil infiltrate in liver histology. Thereafter, two patients had a history of Hashimoto’s disease, high IgG levels, and typical findings on biopsy, unlike the above cases.78 Although our patient had no autoimmune disease, autoantibodies were positive, and IgG level was high. In addition, our case had typical findings on biopsy and responded well to steroid therapy. It is thought to be a new-onset AIH triggered by COVID-19 vaccination, but periportal fibrosis was observed in histological examination. However, in case with acute onset, there may be minimal fibrosis. Moreover, symptoms developed after the second vaccination in this patient, but there is a possibility that inflammation may have occurred even though there were no symptoms after the first vaccination.


Table 1
Characteristics of patients with autoimmune hepatitis after Pfizer-BioNTech COVID-19 vaccineClick for larger imageClick for full tableDownload as Excel file

Because causality cannot be definitively confirmed, it is possible that this association was coincidental. However, severe cases of SARS-CoV-2 infection are characterized by autoinflammatory dysregulation.9 Because the viral spike protein appears to be responsible, it is plausible that spike-directed antibodies induced by vaccination may also trigger autoimmune conditions in predisposed individuals.10 In support of this, several cases of immune thrombocytopenia have been reported days after COVID-19 vaccination. Vaccines protect the host from the virus by inducing antibody generation against viral peptides.11 Autoimmunity can develop due to cross-reactivity to the generated antibodies. The epitopes used for induction of the host immune system may mimic the structure of self-peptides, and antibodies that develop after vaccination may cause cross-reactivity directed to the self.12

Given the close temporal relationship between vaccination and onset of symptoms, we hypothesized that vaccination against COVID-19 could have triggered the development of AIH in our patient. To the best of our knowledge, this is the first reported episode of AIH that developed post-COVID-19 vaccination in Korea. Whether a causal relationship exists between COVID-19 vaccination and the development of AIH remains to be determined. Nevertheless, it is necessary to raise awareness about potential side effects that will likely emerge as more individuals are vaccinated.

1. World Health Organization. Global surveillance for COVID-19 caused by human infection with COVID-19 virus: interim guidance 2020. [Updated 2020]. [Accessed November 28, 2021].https://apps.who.int/iris/handle/10665/331506.2. Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases. Curr Opin Rheumatol 2021;33(2):155–162.

3. Bril F, Al Diffalha S, Dean M, Fettig DM. Autoimmune hepatitis developing after coronavirus disease 2019 (COVID-19) vaccine: causality or casualty? J Hepatol 2021;75(1):222–224.

4. Lee EJ, Cines DB, Gernsheimer T, Kessler C, Michel M, Tarantino MD, et al. Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination. Am J Hematol 2021;96(5):534–537.

5. Czaja AJ. Autoimmune liver disease. Curr Opin Gastroenterol 2004;20(3):231–240.

6. Lodato F, Larocca A, D’Errico A, Cennamo V. An unusual case of acute cholestatic hepatitis after m-RNABNT162b2 (Comirnaty) SARS-CoV-2 vaccine: coincidence, autoimmunity or drug-related liver injury. J Hepatol 2021;75(5):1254–1256.

7. Rocco A, Sgamato C, Compare D, Nardone G. Autoimmune hepatitis following SARS-CoV-2 vaccine: may not be a casuality. J Hepatol 2021;75(3):728–729.

8. Avci E, Abasiyanik F. Autoimmune hepatitis after SARS-CoV-2 vaccine: new-onset or flare-up? J Autoimmun 2021;125:102745

9. Ehrenfeld M, Tincani A, Andreoli L, Cattalini M, Greenbaum A, Kanduc D, et al. COVID-19 and autoimmunity. Autoimmun Rev 2020;19(8):102597

10. Vojdani A, Kharrazian D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin Immunol 2020;217:108480

11. Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol 2021;21(8):475–484.

12. Malonis RJ, Lai JR, Vergnolle O. Peptide-based vaccines: current progress and future challenges. Chem Rev 2020;120(6):3210–3229.

Exclusive: Pilots Injured by COVID Vaccines Speak Out: ‘I Will Probably Never Fly Again’

Authors: MICHAEL NEVRADAKIS  MAY 8, 2022 The Epoch Times Originally Published Children’s Defense Fund

In interviews with The Defender, pilots injured by COVID-19 vaccines said despite a “culture of fear and intimidation” they are compelled to speak out against vaccine mandates that rob pilots of their careers — and in some cases their lives.

As a commercial pilot, Bob Snow had long looked forward to seeing his daughter follow in his footsteps by helping her learn to fly an airplane.

However, having received the COVID-19 vaccine “under duress,” this dream is no longer a possibility for Snow.

“I will probably never fly again,” Snow said in a video he made about his story. “I was hoping to teach my daughter to fly. She wants to be a pilot. That will probably never happen, all courtesy of the vaccine.”

Snow is one of a growing number of pilots coming forward to share stories of injuries they experienced after getting a COVID-19 vaccine.

Some of these accounts are “hair-raising and deeply disturbing,” according to Maureen Steele, a paralegal and head of media relations for the John Pierce Law Firm.

The firm represents U.S. Freedom Flyers (USFF), an organization opposing vaccine and mask mandates for pilots and airline staff, in a series of legal actions against the U.S. Federal Aviation Administration (FAA) and several airlines.

Josh Yoder, a pilot with a major commercial airline, Army combat veteran and former flight medic, is a co-founder of USFF.

In a recent interview with The Defender, Yoder said the FAA has been aware of cases of pilots suffering vaccine injuries since at least December 2021, when the California-based Advocates for Citizens’ Rights hand-delivered an open letter to the FAA, major airlines and their insurers.

Yoder said USFF “has received hundreds of phone calls from airline employees who are experiencing adverse reactions post COVID-19 vaccination,” describing the stories as “heartbreaking.”

According to Yoder, the warnings contained in the letter, including testimony by “world-renowned experts,” were “completely ignored,” adding that “we are now beginning to see the consequences.”

This is leading an increasing number of pilots to “come forward to expose the truth regarding these toxic injections,” Yoder said.

The Defender recently reported on a series of reports that have been submitted to the Vaccine Adverse Event Reporting System, or VAERS, involving pilots who sustained severe injuries and side effects following the COVID-19 vaccine.

Congressional testimony from Cody Flint, an agricultural pilot who has logged more than 10,000 flight hours, was included in this letter.

“The FAA has created a powder keg and lit the fuse,” Flint said in an interview with The Defender.

“We are now seeing pilots experiencing blood clots, myocarditis, pericarditis, dizziness and confusion at rates never seen before. Pilots are losing their careers and having to call in sick or go on medical leave from medical issues developing almost immediately after vaccination.”

Vaccine-Injured Pilots Share Stories With the Defender

Several pilots, including Bob Snow, shared their stories with The Defender in a recent series of interviews.

Snow, a captain with a major U.S. airline, told The Defender he received the Johnson & Johnson COVID-19 vaccine on Nov. 4, 2021, “as a result of an unambivalent company mandate to receive the vaccine or be terminated.”

According to Snow, he “began experiencing issues a little over two months” after receiving the vaccine. Due to a history of gastroenteritis, he underwent an endoscopy and an abdominal CT scan.

The results of the endoscopy were normal and Snow was awaiting the results of the CT scan when he suffered cardiac arrest on April 9, immediately after landing at Dallas-Forth Worth International Airport.

As Snow described it:

“I was very lucky to have collapsed when and where I did, as the aircraft was shut down at the gate post-flight and care was immediately provided.

“There was absolutely no warning preceding my collapse in the cockpit. It was literally as if someone ‘pulled the plug.’”

After receiving CPR and AED (automated external defibrillator) shocks to be revived, Snow spent almost a week in the hospital, where he was diagnosed with having sustained sudden cardiac arrest (SCA).

Medical studies indicate survival rates for out-of-hospital SCA cases are estimated at 10.8% to 11.4%.

Snow said:

“Needless to say, that’s not an encouraging number and I feel very, very lucky to have survived.

“Had this happened in a hotel, in flight, at home or almost anywhere else, I do not believe I would be here right now.”

Snow said prior to this incident, he had “no history of prior significant cardiac issues,” based on two EKGs (electrocardiograms) per year for each of the previous 10 years — none of which, according to Snow, “provided any indication of incipient issues that might lead to cardiac arrest.”

“I have no known family history to indicate a predisposition to developing significant cardiac issues at this point in my life,” Snow added.

Snow has been recuperating at home since April 15, while awaiting more tests that will provide a prognosis for his long-term survival.

However, it is likely that he will never fly again in any capacity.

Snow said, “[f]or now, it appears my flying career — indeed, likely all flying as a pilot —  has come to a rapid and unexpected conclusion as SCA is a red flag to FAA medical certification.”

This, according to Snow, has resulted “in a significant loss of income and lifestyle,” adding that he has a college student and high school student at home and a non-working spouse who relied on his livelihood.

‘Last Thing I Remember Is . . . Praying I Would Make It’

Like Snow, Cody Flint had no prior medical history to indicate he was at risk.

“I have been extremely healthy my whole life with no underlying conditions,” said Flint, adding:

“As a pilot that held a second-class medical [certification], I was required to get a yearly FAA flight physical to show I was healthy enough to safely operate an airplane.

“I have renewed my medical every year since I was 17. The last FAA medical I received was on January 19, 2021. The medical showed I was perfectly healthy just 10 days before receiving the COVID-19 vaccine.”

Flint got his first (and only) dose of the Pfizer COVID-19 vaccine on Feb. 1, 2021. He told The Defender:

“Within 30 minutes, I developed a severe burning headache at the base of my skull and blurred vision. After a few hours, the pain was constant, but didn’t seem to be getting worse. I thought the pain would go away, eventually. It did not.”

Two days later began his seasonal job as an agricultural pilot, which typically runs from February to October of each year, Flint said.

He said:

“Approximately one hour into my flight, I felt my condition starting to rapidly decline and I was developing severe tunnel vision. I pulled my airplane up to turn around to head home and immediately felt an extreme burst of pressure in my skull and ears.”

Flint initially considered landing on a nearby highway, unsure he’d make it back to the airstrip, but chose not to so as not to put the public in danger.

Instead, according to Flint:

“The last thing I remember is seeing our airstrip from a few miles out and praying I would make it.

“Later, my coworkers told me I landed and immediately stopped my plane. They described me as being unresponsive, shaking and slumped over in my seat … I do not remember landing or being pulled from the plane.”

Flint said various doctors, including his longtime hometown doctor, refused to consider that his recent COVID-19 vaccination caused his symptoms. Instead, he was prescribed Meclizine for vertigo and Xanax for panic attacks.

According to Flint, doctors told him he would be “completely better within two days.” But two days later, Flint “could barely walk without falling over.”

Seeking a second opinion, Flint visited the Ear & Balance Institute in Louisiana, where he was diagnosed with left and right perilymphatic fistulas (a lesion in the inner ear), and highly elevated intracranial pressure due to swelling in his brainstem.

As Flint described it, “[m]y intracranial pressure had risen so high that it caused both of my inner ears to ‘blow out.’” Doctors told him this is usually caused by major head trauma.

“Obviously, I did not have head trauma,” said Flint. “What I did have, though, was an unapproved and experimental ‘vaccine’ just two days prior to suffering this bodily damage.”

“My doctors [at the Ear & Balance Institute] clearly stated my health issues were a direct result of a severe adverse reaction to the Pfizer COVID-19 vaccine,” he added.

Flint says he now cannot receive renewed medical certification from the FAA due to the injuries he sustained, the physical condition he is currently in and “the fact that I will be on the FAA-unapproved medicine Diamox for the foreseeable future.”

Like Snow, Flint believes “it is … highly unlikely that I’ll ever be able to fly again,” adding, “On most days, I am too dizzy to even safely drive a vehicle.”

Greg Pierson, like Snow and Flint, shared a similar story. A commercial pilot with a major U.S. airline that is also a federal contractor, he was mandated to get vaccinated.

Pierson told The Defender:

“I felt extremely pressured to consider getting vaccinated, even though I am adamant against any mandates that violate personal freedom choices.

“I did research and consulted several medical professionals regarding the associated risks.

“I have never had a flu shot in my lifetime, so this was not something I wanted to do. I reluctantly received the first dose of the Pfizer vaccine on August 26, 2021.”

For Pierson, the onset of symptoms was almost immediate, beginning “approximately 14 hours” after receiving the vaccine, when he experienced “an extremely erratic and highly elevated heart rate.”

Pierson visited a local emergency room, where he was diagnosed with atrial fibrillation. His condition was stabilized and he was soon discharged, though he remained on medication to help his heart return to a normal rhythm.

While Pierson says he has not experienced any further episodes, he nevertheless still has not been cleared to return to the cockpit.

“I successfully passed all the required protocols to re-obtain my certification that will allow me to return to work,” he said, adding the FAA has had his records and test results since Feb. 16, but he still hasn’t received a determination.

“I have been on disability since this occurrence, and combined with the leave, the personal and financial impacts have been significant,” Pierson said.

Pierson also described a similar experience to that of Flint, regarding the attitudes of some medical professionals regarding the possibility that his condition was brought on by the COVID-19 vaccine.

“When I brought the subject up to the ER cardiologist, that it was obvious what triggered my onset, she simply stated ‘s*it happens,’” Pierson said.

Widow Describes Husband’s Last Days

Snow, Flint and Pierson are fortunate in that they have managed to survive, even if their flying careers are in jeopardy.

But other pilots have not been so lucky.

American Airlines pilot Wilburn Wolfe suffered a major seizure following his COVID-19 vaccination, which cost him his life. Fortunately, Wolfe was not on duty when his seizure hit.

Claudia Wolfe, his widow, shared her late husband’s story with The Defender.

Wolfe, a former Marine just a few years from retirement, “was definitely against getting this vaccine but was put in the position to take it or lose his job as a captain,” Claudia Wolfe said.

He received the Johnson & Johnson vaccine on Nov. 9, 2021.

Claudia Wolfe told The Defender:

“[The] first 10 days were without any event … [on] day 11, it started with a migraine-like headache which got better that afternoon after taking a couple of aspirin.

“Unfortunately, the migraine came back and he was hoping that it’s nothing else but a migraine.

“On November 22, 13 days after the COVID vaccine, he had a seizure. When paramedics arrived and my husband came out of the seizure, he was paralyzed on his right side, arm and leg, and was taken to the emergency room.”

At the emergency room, a CT scan showed he was experiencing brain bleeding, and he was admitted into intensive care. There, according to Claudia Wolfe, “he continued to have convulsions on his right hand … shortly after he was admitted, he had another seizure and doctors decided to sedate him and put him on a ventilator.”

“That was the last time I talked to my husband, before the seizure in the ICU,” Claudia Wolfe said.

Wolfe never regained consciousness and died on Nov. 26, 2021 — only 17 days after receiving the COVID-19 vaccine. Even if he had survived, he likely would not have been able to work as a pilot again.

As Claudia Wolfe explained:

“Doctors told me that he couldn’t work as a pilot anymore because he would have to be on seizure medication.

“But as the bleeding continued to spread I was told that he probably would not recognize me or his family and he probably would need a 24-hour facility to help him.

“This man was so strong and never needed a doctor, he was never sick enough to need one, and [he] just had a physical a couple months prior for his job as a pilot.”

Pilots Describe Culture of Fear and Reluctance to Come Forward

Pilots who spoke to The Defender described a culture of intimidation that has led to many of their colleagues fearing professional or personal consequences if they speak publicly about injuries following COVID-19 vaccination.

According to Yoder, “Many pilots and other airline employees capitulated to the tactics of threats, harassment and intimidation perpetrated by the very companies they serve.”

Yoder described airlines, as well as aviation industry unions, as “state actors” illegally “working in lockstep with the U.S. government” to “enforce unconstitutional mandates via a culture of fear.”

Snow told The Defender several of his colleagues shared stories of vaccine injuries with him:

“Since my SCA I have heard from several other airline personnel regarding potential vaccine injuries up to and including cardiac issues (chest pain and myocarditis).

“Many crewmembers are very reluctant to divulge potential significant health issues for fear of losing their FAA medical certification and, potentially, their careers.”

According to Snow, such fear exists “due to both concern for one’s career and also the fear of being portrayed as a vaccine skeptic.”

“There seems to be genuine reluctance on the part of corporations, businesses, government and the medical community in general to acknowledge the potential for COVID vaccine injury,” Snow said.

Claudia Wolfe also shared her experience, stating that following her husband’s death, she learned “of others that died after the COVID vaccine,” adding that “not many talk about it or believe this vaccine can harm or kill you.”

Pierson also expressed concerns, telling The Defender, “Some things I have stated publicly could have consequences in this regard.”

This culture of intimidation appears to extend beyond just accusations of being a “vaccine skeptic.”

Steele described incidents of airline employees’ non-work and online activities seemingly being monitored by their employers, who are then using this as a justification to question or harass those employees.

“I believe the airlines have people on staff that must be trolling the social media of employees and when they find a conservative, or someone they believe to be, they attack,” Steele said.

Steele said female employees appear to be particular targets of the airlines, as they “appear to be isolated and intimidated for hours on end.”

Flint connected incidents such as those described above to political interests, telling The Defender the FAA approved COVID-19 vaccines for pilots just two days after the U.S. Food and Drug Administration (FDA) issued its first Emergency Use Authorization (EUA) for such vaccines, on Dec. 10, 2020.

“I thought to myself, how could the FAA analyze the data and determine it was safe for pilots in just two days, when it took the FDA months to go over the trial data?” Flint said.

Flint said that was an especially jarring development, in light of the increased risk that pilots and cabin crew face:

“I was also extremely curious to know how the FAA is so certain that this vaccine will be safe for pilots when it’s obvious that Pfizer did not do a trial solely on pilots to find out if it would cause some of the serious health problems that immediately started to show up once the mass vaccination campaign [began].”

In the process, Flint stated, the FAA violated its own regulations.

Under the Guide for Aviation Medical Examiners: Pharmaceuticals (Therapeutic Medications) Do Not Issue – Do Not Fly, the FAA has a long-standing rule that states:

“FAA requires at least one year of post-marketing experience with a new drug before consideration for aeromedical certification purposes. This observation allows time for uncommon, but aeromedically significant, adverse reactions to manifest themselves.”

Flint said it “became painfully obvious” the FAA issued this guidance based not on science or safety, but political reasons.

“Why did the FAA abandon its own rules by encouraging pilots to take a brand-new experimental drug?” Flint asked. “This action by the FAA was totally unprecedented and extremely dangerous.”

Providing an example of such danger, Flint said, “it is now widely reported that mRNA COVID-19 vaccines can cause blood clots,” adding that several peer-reviewed studies going back more than a decade “show pilots are approximately 60% more likely to experience blood clots due to the ‘nature of the job.’”

Supporting this assertion, on May 5, the FDA announced that it would restrict who could receive doses of the Johnson & Johnson COVID-19 vaccine, due to the risk of blood clots.

Pierson also believes politics are at play in the medical community, telling The Defender even his longtime doctor told the FAA, in paperwork aimed at restoring Pierson’s suspended medical certification, that “it is impossible for the vaccine to have caused” his condition, though “he could not provide any explanation for an alternative hypothesis” — a stance Pierson characterized as “medical malpractice.”

Such politics are also found in professional organizations within the aviation industry, according to Pierson, who described his experience with one such entity:

“I approached the medical division of ALPA, the Air Line Pilots Association, to which I am a member, and presented them with data to substantiate my concerns.

“It was initially seemingly a concerned, open dialogue, which quickly was dismissed at the highest levels.”

Legal Actions to Follow Against the FAA, Federal Agencies, Airlines

The USFF, according to Yoder, is currently pursuing several legal actions related to the vaccine injuries that pilots and air staff are increasingly reporting.

He told The Defender:

“The U.S. Freedom Flyers have always taken a strong stance against the threats of government and corporate totalitarianism.

“We are filing massive, individual plaintiff lawsuits against the FAA, DOT [U.S. Department of Transportation] and commercial airlines to hold them accountable for the criminal and civil atrocities they’ve committed against our members.

“We will not rest until justice is served and constitutional American freedom is restored.”

Steele added:

“We are teeing up lawsuits for all the major airlines, with thousands of potential plaintiffs on our plaintiff lists.

“We also are going to be holding the FAA and the [U.S. Department of Transportation] accountable for their part in this atrocity.”

Steele said USFF “will be seeking retribution and restitution for these crimes against humanity,” mirroring remarks made by Pierson, who described the actions taken in the name of the pandemic as “nothing short of the highest crimes against humanity ever.”

According to Steele, unions are, in part, responsible for the injuries being sustained by pilots and other employees, as a result of their acceptance of vaccine mandates.

“Unfortunately the unions — from all industries — have let their members down,” Steele told The Defender. “They simply are rolling over and are in bed with the state and the corporations.”

Flint, in turn, assigned a significant amount of blame to the federal agencies:

“The FAA has failed at its duties in the most spectacular fashion, causing pilots to lose their lives, livelihoods and careers.

“The federal government, including the FAA, has not helped one single person injured by the COVID-19 vaccine.

“They [the federal agencies] have not publicly acknowledged there is a problem. They haven’t even so much as adjusted their ‘guidance’ to prevent this from happening in the future.”

Are Passengers at Risk From Pilot Vaccine Mandates?

When Snow suffered cardiac arrest, it occurred only a few minutes after he had landed a commercial airliner, full of passengers, at one of the most heavily trafficked airports in the U.S.

This begs the question: Are passengers — and the public at large — at risk due to potential adverse effects that may impact vaccinated pilots during flight?

According to Pierson, there is indeed a risk of a “catastrophic” incident:

“I became an outspoken critic of the vaccines after my injury, and due to becoming much more knowledgeable of all the potential health and safety risks from the vaccines.

“It became very clear to me that the implications of having an immediate, severe adverse reaction could be catastrophic if actively piloting an aircraft.”

Flint believes such a disaster may be an inevitability.

“It is only a matter of time before a pilot has a medically significant event from an adverse reaction to this [COVID-19] vaccine and crashes an airliner, killing a few hundred American citizens in the process.”

He added:

“When will the FAA finally do the right thing by trying to adhere to its own mission statement, which is ‘to provide the safest, most efficient aerospace system in the world’?

“How many more pilots have to die or be severely injured before the FAA acknowledges the horrible and dangerous problem it has created?”

In addition to the risk of a disaster involving casualties among passengers and the general public, the difficulties that pilots are experiencing as a result of vaccine-related adverse reactions are creating other disruptions for the airline industry and the flying public, such as flight cancellations and delays.

Yoder described this as a “ripple effect”:

“Vaccine mandates are having a ripple effect in the aviation industry that will continue for years to come.

“Pilot shortages were a concern pre-mandate, [and] have now been amplified due to early retirements and medical disqualification due to certain adverse vaccine reactions which prohibit pilots from maintaining medical certification.”

Pilots, Advocates Describe Importance of Speaking Out

The pilots, legal professionals and advocates who spoke to The Defender all expressed their hope that by speaking out and sharing their stories and experiences, they will make a difference.

Snow said:

“I hope to shine the spotlight on the potential for significant safety issues that exist within the airlines, commercial vehicles/transportation, and other safety-sensitive work that might be affected by [the] sudden onset of health issues that could be attributed to the COVID vaccines.

“It is in our collective best interest that real research and data analysis be undertaken to address this potentially dangerous situation.

“Why is there such a reluctance to investigate these EUA COVID vaccines which are still being aggressively marketed to, if not outright forced upon, the global public?”

Snow went on to discuss the history of unsafe drugs and therapies that had initially received FDA approval and the importance of “clinical and scientific studies to evaluate the possibility of injuries and deaths” instead of “parroting the marketing mantra ‘safe and effective.’”

Flint described the FAA’s handling of the issue as “one of the most glaring instances of incompetence and corruption I have ever witnessed,” adding that “the Pfizer COVID-19 vaccine has taken nearly everything from myself and my family … my health and my career have been taken from me.”

He added that due to his inability to fly, he is facing mounting debt and unpaid taxes, with an income “20% of what it was before vaccination.”

Steele, who also organized the People’s Convoy, expressed her view that “[t]he only way to push back on the government and corporate overstep is demanding accountability … to hold these policymakers unequivocally accountable.”

She specifically referenced the importance of pursuing legal claims, telling The Defender:

“The only way to ensure it never happens again is to hit them in the pocketbook … In doing so, the awarded damages will also assist the victims of these policies that have been so grievously harmed.”

Yoder described the resistance he has observed to such private and government mandates, saying that “Americans have rallied in defiance to the totalitarian dictators dubbed ‘government,’” adding that “American patriots will never succumb to totalitarianism.”

Steele drew upon her experience with the People’s Convoy to share her own observation of wide public opposition to such mandates, while expressing a message of hope:

“My greatest takeaway and the most refreshing finding on the Convoy was that patriotism is alive and well in our great country.

“The American people have had it with the nonsense with the overstepping, with the ‘PC police,’ the degrading of morality in our country. They are simply over it and looking for actionable items that they can do.

“They want to see accountability. They want to see our country restored … It is important for people to know they are absolutely not alone. In fact, we are the majority.”