COVID-19 Causes Genetic Changes that Create Long-Haul COVID-19 Symptoms, Researchers Find

Gene changes caused by SARS-CoV-2 spike proteins provide a potential answer for what causes long-haul COVID-19, Texas researchers find 

As COVID-19 vaccines become widely available and cases of COVID-19 in the United States begin to drop, the medical community is beginning to focus more on the long-term effects of COVID-19. Sometimes called “long-haul COVID-19,” the varied and long-term effects that a SARS-CoV-2 infection can create are just starting to be understood (See Long-Haul COVID-19 Emerges as a Concern, Potentially Increasing Need for More COVID-19 Antibody Testing).

New research out of Texas Tech University provides a possible explanation for why these symptoms occur. Led by Sharilyn Almodovar, PhD, at the Texas Tech University Health Sciences Center, researchers found that exposing airway cells to the spike protein of the SARS-CoV-2 virus caused genetic changes.

Potential Impact of Exposure to SARS-CoV-2 Spike Protein Alone

“We found that exposure to the SARS-CoV-2 spike protein alone was enough to change baseline gene expression in airway cells,” said Nicholas Evans, a master’s student at the Texas Tech University Health Sciences Center and one of the researchers involved in the study. “This suggests that symptoms seen in patients may initially result from the spike protein interacting with the cells directly.”

This finding that changes in gene expression occur with exposure to the spike protein of SARS-CoV-2 provides a possible explanation of what causes the mysterious, unexplainable symptoms of long-haul COVID-19 that vary from patient to patient. Changes in gene expression can have different effects on different patients, depending on their genetic makeup and their exposure to the virus.

“Our work helps to elucidate changes occurring in patients on the genetic level, which could eventually provide insight into which treatments would work best for specific patients,” says Evans.

Research May Eventually Lead to Clues About Unexplained Illnesses

While the scientific community’s understanding of long-haul COVID-19 is still quite nascent, Almodovar’s team’s findings are one of the first findings in studying long-haul COVID-19 that provide a good explanation for what could potentially be the cause of these symptoms. This new research will undoubtedly lead to further research examining more in-depth which genes are affected and to what extent this impacts different individuals. These findings may also have implications for other previously unexplained illnesses, such as the long-term effects of Lyme disease.

One interesting result of the these findings is that they may explain why some people with long-haul COVID-19 symptoms have relief of their symptoms after getting vaccinated against COVID-19. Authorized COVID-19 vaccines are designed to use human cells to manufacture spike proteins and stimulate immunity. The finding that the spike protein of SARS-CoV-2 may cause long-haul COVID-19 symptoms could explain how vaccines that artificially create a form of the spike protein could cause these symptoms to change.

COVID-19 Vaccine Questions, Further Studies

Another question that this finding raises is if COVID-19 vaccines, which artificially create SARS-CoV-2 spike proteins, could also stimulate changes in gene expression, causing symptoms that mimic long-haul COVID-19 symptoms.

While Almodovar’s team’s research is only the beginning of study into the possibility of gene expression changes driving long-haul COVID-19 symptoms, it may become a foundational concept in this area of research.

Understanding the implications and effects of long-haul COVID-19 will be important for clinical laboratories that provide COVID-19 antibody testing. As the medical community’s understanding of long-haul COVID-19 increases, it may not only increase the demand for serology tests but may also create a demand for other related tests, particularly immunologically-related tests.

Clinical laboratories will benefit from keeping abreast of long-haul COVID-19 related research and being aware of developments that affect how testing will support clinical treatments and outcomes.

Long-Haulers: Spike Protein Present on Covid And in Vaccines Dangerously Modifies Genes Even After Exposure – Texas Tech Uni Study

study by the Texas Tech University published in Biochemistry and Molecular Biology section of the FASEB journal, has found that spike proteins which Covid-19 uses to penetrate cells and is also supplied in abundance by vaccines to stimulate the body’s immune response, modify the body’s genes.

The study coordinators, Nicholas Evans et al. found that even after exposure, these proteins stimulate continued gene expression and inflammatory events that may be behind the long haul Covid and post vaccine syndromes.

Quoting from a review of the study as we published earlier:

“Results from a new cell study at Texas Tech University Health Sciences Center, US, suggest that the SARS-CoV-2 Spike (S) protein can bring about long-term gene expression changes. The findings could help explain why some COVID-19 patients experience symptoms such as shortness of breath and dizziness long after clearing the infection, a condition known as long COVID.

“We found that exposure to the SARS-CoV-2 S protein alone was enough to change baseline gene expression in airway cells,” said Nicholas Evans, one of the researchers. “This suggests that symptoms seen in patients may initially result from the S protein interacting with the cells directly.””

https://www.drugtargetreview.com/news/90224/gene-changes-caused-by-spike-protein-could-explain-long-covid/

The study is titled “Lung Time No See”: SARS-Cov-2 Spike Protein Changes Genetic Expression in Human Primary Bronchial Epithelial Cells After Recovery” and is published in the Biochemistry and Molecular Biology section of the FASEB journal.

https://faseb.onlinelibrary.wiley.com/doi/abs/10.1096/fasebj.2021.35.S1.03097

Long Haul Covid and Long Haul Post-Vaccine Syndromes

Long haul covid or Long-COVID or COVID long-haulers according to a new review can present with as many as 55 long term symptoms. The most common of which are “fatigue (58%), headache (44%), attention disorder (27%), hair loss (25%), and dyspnea (24%)…Diseases such as stroke and diabetes mellitus were also present.” Psychiatric problems like dementia and insomnia are also included. Smell and taste deficiency may persist as also cough and lung abnormalities. Autoimmune problems where the body fights itself is also part of this plethora of presentations. Weight loss, palpitations, renal failure, mood disorders, throat pain and sputum, myocarditis, arrhythmia, OCD, intermittent fever, digestive problems are some more.

These same symptoms as well as symptoms of acute covid infection are now reported months after being vaccinated according to Dr. Bruce Patterson, a pioneer in figuring out Covid and Long haul syndromes.

The precise cause of Long-COVID and Long-Post-Vaccine is being investigated but it may be due to organ damage or persistent autoimmune or inflammatory damage after the infection. Another recent study found Epstein Bar virus reactivated in 73% of long haulers and blamed this for the chronic fatigue, raynaud’s phenomenon and other related symptoms in long haulers.

“We found over 73 percent of COVID-19 patients who were experiencing long COVID symptoms were also positive for EBV reactivation.”

The long-lasting gene changes that result from spike proteins as discovered by Texas Tech University may well be the culprits in these prolonged syndromes.

Watch Dr. Patterson Discuss Long Haul Post-Vaccine Syndrome on Dr. Bean

Video culled from https://www.youtube.com/watch?v=JwjJs5ZHKJI&t=1210s @ 20mins

Dr. Thomas E. Levy, MD, JD writes in OrthoMolecular that “depending on the cell types to which such spike proteins bind, a wide variety of diseases with autoimmune qualities can result.” He recommends treating both syndromes the same way with Vitamin C, Ivermectin, Quercetin and other agents.

“long-haul COVID syndrome likely represents a low-grade unresolved smoldering COVID infection with the same kind of spike protein persistence and clinical impact as is seen in many individuals after their COVID vaccinations (Mendelson et al., 2020; Aucott and Rebman, 2021; Raveendran, 2021).”

http://orthomolecular.org/resources/omns/v17n15.shtml

He further postulates an effect of the spike protein on the ACE2 receptor which has roles in essential pathways that protect blood vessels and other vital physiological processes.

“By itself, the disruption of ACE2 receptor function in so many areas of the body has resulted in an array of different side effects (Ashraf et al., 2021).” Dr Levy writes.

Salk researchers earlier in April found that the spike protein was dangerous to blood vessels by itself, their investigations “proving that the spike protein alone was enough to cause disease.”

Texas Tech University described the dangerous gene-modifying effects of the spike protein as being long-lived and leading to genetic inflammatory changes even after exposure.

“The researchers found that cultured human airway cells exposed to both low and high concentrations of purified S protein showed differences in gene expression that remained even after the cells recovered from the exposure. The top genes included ones related to inflammatory response.”

The study researcher, Nicholas Evans, et al. Concluded:

“Our preliminary results suggest that the SARS-CoV-2 spike protein is enough to change the baseline protein expression in primary HBECs. After recovery, genes related to immune response retained changes in gene expression, and these may indicate relevant long-term effects in asymptomatic patients. Additionally, the interplay between immune response and other pathways after SARS-CoV-2 spike protein exposure should be investigated in the future.”

NewsRescue experts opine: “It is plausible that candidates with lower immunities face more adverse reactions and are on greater risk of Long haul post-vaccine syndrome because it takes longer for their immune system to kick off and wash out the spike proteins produced in the body post vaccine. Studies should investigate any relationship between Long haul post-vaccine and immune compromise.

“Of the various vaccines, AstraZeneca distributed in Africa and the rest of the poorer third world is the worst for many reasons including the fact that it delivers the wild-type unmodified spike protein which has the capacity to transform to the ‘post-fusion’ state and enter the cell and as such has the potential to cause more gene modification or other side effects.”

Animal studies have found toxic effects of spike proteins.

“…those animal studies where Spike protein was produced by a pseudovirus, or the S1 subunit was administered directly. Both of these caused pathology in the animals all by itself, without coronavirus itself being present.”

https://blogs.sciencemag.org/pipeline/archives/2021/06/15/the-novavax-vaccine-data-and-spike-proteins-in-general

Vaccine Technology and the Spike Protein

All current vaccines introduce the spike protein in the recipient. Oxford/AstraZeneca and Janssen (Johnson and Johnson) use ‘vectors’, J&J uses adenovirus type 26 (Ad26) as its vector, while AstraZeneca uses a chimpanzee adenovirus to introduce the spike protein. Moderna, Pfizer/BioNTech vaccines introduce mRNA which is a sort of pre-protein. This mRNA is then read by your cells and translated into S1 and modified spike proteins.

While Oxford/AZ introduces the same exact spike protein the virus uses, Moderna, Pfizer/BioNTech and J&J make the body produce a modified spike protein which has the addition of two amino acids (these are the building blocks of proteins), which modify the spike protein so it stays stuck in the ‘pre-fusion’ state and does not switch to the ‘post-fusion’ state which can penetrate the cell.

– Read more: https://newsrescue.com/long-haul-post-vaxx-syndrome/

Certainly more studies shall continue to help humanity deal with these complex new long haul syndromes and to completely reverse the effects of the possible gene modification as reported.

Resolving “Long-Haul COVID” and Vaccine Toxicity: Neutralizing the Spike Protein

Authors: Dr. Thomas E. Levy, MD, JD   July 1, 2021

Although the mainstream media outlets might have you believe otherwise, the vaccines that continue to be administered for the COVID pandemic are emerging as substantial sources of morbidity and mortality themselves. While the degree to which these negative outcomes of the COVID vaccines can be debated, there is no question that enough disease and death have already occurred to warrant cessation of the administration of these vaccines until additional scientifically-based research can examine the balance between its now clear-cut side effects versus its potential (and still not yet clearly proven) ability to prevent new COVID infections.

Nevertheless, enough vaccinations have already been administered to warrant concern that a new “pandemic” of illness and death may well be emerging from the side effects that continue to be documented in steadily increasing numbers. The vaccine-induced “culprit” that is now receiving most of the attention and is the focus of much new research is the COVID virus fragment known as the spike protein. Its physiological impact appears to be doing far more harm than good (COVID antibody induction), and its manner of introduction appears to be fueling its ongoing replication with a continuing presence inside the body for an indefinite length of time.

The physical appearance of the COVID virus can been depicted as a central sphere of viral protein surrounded completely by spear-like appendages. Known as spike proteins, they are very analogous to the quills surrounding a porcupine. And just as the porcupine stabs its victim, these spike proteins penetrate into cell membranes throughout the body. After this penetration, protein-dissolving enzymes are activated, the cell membrane breaks down, the viral sphere enters the cytoplasm through this membrane breach, and the metabolism of the cell is subsequently “hijacked” to manufacture more viral particles. These spike proteins are the focus of a great deal of ongoing research examining vaccine side effects (Belouzard et al., 2012; Shang et al., 2020).

The Spike Protein’s Toxic Effects in the Body

The spike protein first attaches to ACE2 (angiotensin converting enzyme 2) receptors in the cell membranes (Pillay, 2020). This initial binding step is vital to triggering the subsequent sequence of events that brings the virus inside the cell. When this binding is blocked by competition or prompt enough displacement with an appropriate therapeutic agent, the virus cannot enter the cell, the infectious process is effectively stopped, and the immune defenses of the body are freed to mop up, metabolize, and eliminate the viral pathogens, or just the spike protein alone if free and no longer attached to a viral particle.

Although ACE2 is found in many different cells throughout the body, it is especially noteworthy to realize that it is the initial target bound by coronavirus on the epithelial cells lining the airways after pathogen inhalation (Hoffmann et al., 2020). ACE2 expression (concentration) is also especially high on lung alveolar epithelial cells (Alifano et al., 2020). This cell membrane-bound virus can then begin the process that eventually results in the severe acute respiratory syndrome (SARS) seen in clinically-advanced COVID infections (Perrotta et al., 2020; Saponaro et al., 2020). The SARS presentation manifests most clearly when the degree of oxidative stress in the lungs is very elevated. This stage of COVID infection-related extreme oxidative stress is often referred to in the literature as a cytokine storm, and left unchecked this invariably leads to death (Hu et al., 2021).

Increasing concern has focused on the continued presence of the spike protein in the blood by itself, unattached to a virion, following COVID vaccination. Supposedly intended to initiate an immune response to the entire virus particle, the spike protein injections are disseminating throughout the body rather than staying put in the upper arm at the vaccine site while the immune response to it evolves. Furthermore, it also appears that these circulating spike proteins can enter cells on their own and replicate themselves without attached virus particles. This not only wreaks havoc inside those cells, it helps to assure the indefinite presence of the spike protein throughout the body.

It has also been suggested that large amounts of spike protein are just binding ACE2 receptors and not proceeding any further into the cell, effectively blocking or disabling normal ACE2 function in a given tissue. Additionally, when the spike protein binds a cell wall and “stops” there, the spike protein serves as a hapten (antigen) which can then initiate an autoimmune (antibody or antibody-like) response to the cell itself, rather than to the virus particle to which it is usually attached. Depending on the cell types to which such spike proteins bind, a wide variety of diseases with autoimmune qualities can result.

Finally, another worrisome property of the spike protein which alone would be of great concern is that the spike protein itself appears to be highly toxic. This intrinsic toxicity, along with the apparent ability of the spike protein to replicate itself indefinitely within the cells it enters, probably represents the way in which the vaccine can inflict its worst long-term damage, as the production of this toxin can continue indefinitely without other external factors at play.

In fact, the long-haul COVID syndrome likely represents a low-grade unresolved smoldering COVID infection with the same kind of spike protein persistence and clinical impact as is seen in many individuals after their COVID vaccinations (Mendelson et al., 2020; Aucott and Rebman, 2021; Raveendran, 2021).

Post-Vaccine Complications

While the totality of the mechanisms involved are far from being completely understood and worked out, the increasing occurrence of post-vaccine clinical complications is nevertheless very clear-cut and must be addressed as rapidly and effectively as possible. By itself, the disruption of ACE2 receptor function in so many areas of the body has resulted in an array of different side effects (Ashraf et al., 2021). Such clinical complications being seen in different organ systems and areas of the body, can all occur in the following three clinical situations. All three are “spike protein syndromes,” although the acute infection always includes the entirety of the virus particles along with the spike protein during the initial phases of the infection.

  1. in an active COVID-19 infection,
  2. during the long-haul COVID syndrome, or
  3. in response to a spike protein-laden vaccine, include the following:
    • Heart failure, heart injury, heart attack, myocarditis (Chen et al., 2020; Sawalha et al., 2021)
    • Pulmonary hypertension, pulmonary thromboembolism and thrombosis, lung tissue damage, possible pulmonary fibrosis (McDonald, 2020; Mishra et al., 2020; Pasqualetto et al., 2020; Potus et al., 2020; Dhawan et al., 2021)
    • Increased venous and arterial thromboembolic events (Ali and Spinler, 2021)
    • Diabetes (Yang et al., 2010; Lima-Martinez et al., 2021)
    • Neurological complications, including encephalopathy, seizures, headaches, and neuromuscular diseases. Also, hypercoagulability and stroke (AboTaleb, 2020; Bobker and Robbins, 2020; Hassett et al., 2020; Hess et al., 2020)
    • Gut dysbiosis, inflammatory bowel disease, and leaky gut (Perisetti et al., 2020; Zeppa et al., 2020; Hunt et al., 2021)
    • Kidney damage (Han and Ye, 2021)
    • Impaired male reproductive capacity (Seymen, 2021)
    • Skin lesions and other cutaneous manifestations (Galli et al., 2020)
    • General autoimmune diseases, autoimmune hemolytic anemia (Jacobs and Eichbaum, 2021; Liu et al., 2021)
    • Liver injury (Roth et al., 2021)

In structuring a clinical protocol to stop the ravages of persistent spike protein presence throughout the body, it is first important to realize that the protocol should be able to effectively treat any aspect of COVID infection, including those periods during active infection, after “active” infection (long-haul COVID), and during ongoing spike protein presence secondary to either “chronic” COVID infection or resulting from COVID vaccine administration.

Treatment Protocols

As is the case with any treatment for any condition, factors of expense, availability, and patient compliance always play a role in determining what treatment a given patient will actually undergo for a given period of time. As such, no one specific protocol will be appropriate for all patients, even if the same pathology is present. Ideally, of course, the best protocol is to use all of the options discussed below.

When the entirety of the protocol is not possible or feasible, which is most often the case, the combination of HP nebulization, high-dose vitamin C, and appropriately-dosed ivermectin is an excellent way to effectively address long-haul COVID and persistent spike protein syndromes.

Much of the rationale of the protocols is based on what is known about the spike protein and how it appears to inflict its harm. The following aspects of spike protein pathophysiology need to all be considered in crafting an optimal treatment protocol:

  • The ongoing production of spike protein by the vaccine-supplied mRNA into the cells for the purpose of stimulating the production of neutralizing antibodies (Khehra et al., 2021)
  • The binding of the spike protein, with or without an attached virion, to an ACE2 binding site on the cell wall, as an initial step to dissolving that portion of the cell wall, permitting the spike protein (and attached virus particle if present) into the cell
  • The binding of the spike protein to an ACE2 binding site, but just remaining bound to that site and not initiating enzymatic degradation of the cell wall, with or without an attached virion
  • The degree to which circulating spike protein is present in the blood and actively disseminating throughout the body
  • The fact that the spike protein by itself is toxic (pro-oxidant in nature) and capable of generating disease-generating oxidative stress throughout the body. This is addressed most directly by persistent and highly-dosed vitamin C.

Therapeutic Agents and Their Mechanisms

A substantial number of agents have already been found to be highly effective in resolving COVID infections, and even more are continuing to be discovered as worldwide research efforts have so intensely focused on curing this infection (Levy, 2020). Some of the most effective agents and their mechanisms of actions include the following:

  1. Hydrogen peroxide (HP) nebulization. Correctly applied, this treatment eliminates acute COVID pathogen presence and any other chronic pathogen colonizations persisting in the aerodigestive tract. Also, a positive healing effect on the lower digestive tract is typically seen, as less pathogens and their associated pro-oxidant toxins are chronically swallowed. Stunning anecdotal evidence has already been seen documenting the ability of HP nebulization to cure even advanced COVID infections (20 of 20 cases) as a monotherapy. (Levy, 2021). All of the supporting research, scientific analysis, and practical suggestions on this therapy is available as a free eBook download [Rapid Virus Recovery] (Levy, 2021).
  2. Vitamin C. Vitamin C works synergistically with HP in eradicating pathogens. It gives strong general immune support, while working to support the optimal healing of damaged cells and tissues. Clinically, it is the most potent antitoxin ever described in the literature, and no reports of it failing to neutralize any acute intoxication when administered appropriately have been published. Continuing persistent and highly-dosed vitamin C in all its forms will prove to be the most useful intervention when there is a large amount of circulating toxic spike protein present. Intravenous, regular oral forms, and liposome-encapsulated oral forms are all very useful in resolving any infection and neutralizing any toxin (Levy, 2002). There is also a polyphenol-based supplement that appears to allow some humans to synthesize their own vitamin C, which could prove to be of enormous protective and healing capacity with COVID patients and vaccine recipients. (https://formula216.com/).
  3. Ivermectin. This agent has powerful antiparasitic and antiviral properties. Evidence indicates that ivermectin binds the ACE2 receptor site that the spike protein needs to bind to proceed with entry into the cell and the replication of viral protein (Lehrer and Rheinstein, 2020; Eweas et al., 2021). Also, under some circumstances, the binding of the spike protein to the ACE2 receptor does not activate the enzymes needed to enter the cell. Possibly, ivermectin might also competitively displace such bound spike protein from the cell walls as well when a sufficient dose is taken. It also appears that circulating spike protein can be bound up directly by ivermectin, rendering it inactive and making it accessible for metabolic processing and excretion (Saha and Raihan, 2021). Where there has been mass administration of ivermectin for parasitic diseases in Africa there has also been noted a significantly lower incidence of COVID-19 infection (Hellwig and Maia, 2021). Ivermectin is also very safe when administered appropriately (Munoz et al., 2018).
  4. Hydroxychloroquine (HCQ) and Chloroquine (CQ). Both HCQ and CQ have been shown to be very effective agents in resolving acute COVID-19 infections. They have also both been shown to be zinc ionophores that can increase intracellular zinc levels which can then inhibit the enzyme activity needed for viral replication. However, both HCQ and CQ have also been found to block the binding of COVID virus spike proteins to the ACE2 receptors needed to initiate viral entry into the cells, giving scientific support for their utility as more directly interfering with spike protein activity before the virus ever breaches the cell (Fantini et al., 2020; Sehailia and Chemat, 2020; Wang et al., 2020).
  5. Quercetin. Similar to HCQ and CQ, quercetin also serves as a zinc ionophore. And like HCQ and CQ, quercetin appears to also work to block the binding of COVID virus spike proteins to the ACE2 receptors, impairing spike protein-virus entry into the cell, or impairing spike protein alonef from entering the cells (Pan et al., 2020; Derosa et al., 2021). Many other phytochemicals and bioflavonoids are demonstrating this ACE2 binding capacity as well (Pandey et al., 2020; Maiti and Banerjee, 2021).
  6. Other Bio-Oxidative Therapies. These include ozone, ultraviolet blood irradiation, and hyperbaric oxygen therapy (in addition to hydrogen peroxide and vitamin C). These three therapies are highly effective in patients with acute COVID infections. It is less clear how effective they would be for long-haul COVID syndrome and patients suffering from ongoing vaccine-generated spike protein syndromes. That is not to say, however, that all three would not prove to be just as excellent for dealing with the spike protein as with the intact virus. It just remains to be determined.
  7. Baseline Vital Immune Support Supplementation. There are definitely hundreds, and perhaps thousands, of quality vitamin, mineral, and nutrient supplements that are all capable of making some contribution to reaching and maintaining optimal health, while minimizing the chances of contracting any kind of infectious disease. A baseline regimen of supplementation that factors in expense, overall health impact, and convenience should include vitamin C, vitamin D3, magnesium chloride (other forms good, but chloride form optimal for antiviral impact), vitamin K2, zinc, and an iodine supplement, such as Lugol’s solution or iodoral. More specific guidance in dosing can be found in Appendix A of Hidden Epidemic, also available as a free eBook download (Levy, 2017). Specifics on mixing up a solution of magnesium chloride for regular supplementation are also available (Levy, 2020).

[More detail on the therapeutic agents above is available in Chapter 10 of Rapid Virus Recovery]

The suggested optimal way to deal with acute COVID that has evolved into long-haul COVID, or with symptoms consistent with the toxic effects of circulating spike protein post-vaccination, is to always eliminate any active or chronic areas of pathogen proliferation with HP nebulization. Vitamin C supplementation should be optimized at the same time. 50-gram infusions of sodium ascorbate should be administered at least several times weekly as long as there is symptomatology attributable to long-haul COVID and circulating spike protein.

Initially, a 25-gram infusion of sodium ascorbate given three times a day should prove to be even more effective as circulating vitamin C is rapidly excreted. Oral vitamin C supplementation should be taken as well, either as several grams of liposome-encapsulated vitamin C daily, or as a teaspoon of sodium ascorbate powder several times daily. One capsule daily of Formula 216 can be added to this as well.

With the “foundation” of HP nebulization and vitamin C supplementation in place, the best prescription medicines to counter long-haul COVID and circulating spike protein would be with ivermectin first, and then HCQ or HQ if the clinical response is not acceptable. Dosages would need to be determined by the prescribing physician.

Along with the baseline immune support supplements noted above, quercetin, 500 to 1,000 mg daily, should be added as well.

Any and all of the above recommendations should be undertaken with the guidance of a trusted physician or other appropriately-trained health care professional.

Recap

Even as the COVID pandemic appears to be slowly subsiding, many individuals are now chronically ill with long-haul COVID and/or with the side effects of a COVID vaccination. It would appear that both clinical situations are primarily characterized by persistent presence of the spike protein and its negative impact on different tissues and organs.

Treatment is aimed at neutralizing the direct toxic impact of spike protein, while working to block its ability to bind the receptors needed to hijack the metabolism of the cell into making new viruses and/or more spike protein. At the same time, treatment measures are taken to assure that there is as complete an elimination of active or smoldering COVID infection remaining in the patient.

The views expressed in this article are the author’s and not necessarily those of the Orthomolecular Medicine News Service or all members of its Editorial Board. OMNS invites alternative viewpoints. Submissions may be sent directly to Andrew W. Saul, Editor, at the email contact address further below.

[Editor’s note: The information in this article is not meant to replace the advice of your doctor. Please consult with your personal physician before making any adjustments to your health care routine.]

REFERENCES

  1. AboTaleb H (2020) Neurological complications in COVID-19 patients and its implications for associated mortality. Current Neurovascular Research 17:522-530. PMID: 32718292
  2. Ali M, Spinler S (2021) COVID-19 and thrombosis: from bench to bedside. Trends in Cardiovascular Medicine
  3. Alifano M, Alifano P, Forgez P, Iannelli A (2020) Renin-angiotensin system at the heart of COVID-19 pandemic. Biochemie 174:30-33. PMID: 32305506
  4. Asraf U, Abokor A, Edwards J et al. (2021) SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiological Genomics 53:51-60. PMID: 33275540
  5. Aucott J, Rebman A (2021) Long-haul COVID: heed the lessons from other infection-triggered illnesses. Lancet 397:967-968. PMID: 33684352
  6. Belouzard S, Millet J, Licitra B, Whittaker G (2012) Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4:1011-1033. PMID: 22816037
  7. Bobker S, Robbins M (2020) COVID-19 and headache: a primer for trainees. Headache 60:1806-1811. PMID: 32521039
  8. Chen L, Li X, Chen M et al. (2020) The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovascular Research 116:1097-1100. PMID: 32227090
  9. Derosa G, Maffioli P, D’Angelo A, Di Pierro F (2021) A role for quercetin in coronavirus disease 2019 (COVID-19). Phytotherapy Research 35:1230-1236. PMID: 33034398
  10. Dhawan R, Gopalan D, Howard L et al. (2021) Beyond the clot: perfusion imaging of the pulmonary vasculature after COVID-19. The Lancet. Respiratory Medicine 9:107-116. PMID: 33217366
  11. Eweas A, Alhossary A, Abdel-Moneim A (2021) Molecular docking reveals ivermectin and remdesivir as potential repurposed drugs against SARS-CoV-2. Frontiers in Microbiology 11:592908. PMID: 33746908
  12. Fantini J, Di Scala C, Chahinian H, Yahi N (2020) Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. International Journal of Antimicrobial Agents 55:105960. PMID: 32251731
  13. Galli E, Cipriani F, Ricci G, Maiello N (2020) Cutaneous manifestation during COVID-19 pandemic. Pediatric Allergy and Immunology 31 Suppl 26:89-91. PMID: 33236439
  14. Han x, Y Q (2021) Kidney involvement in COVID-19 and its treatments. Journal of Medical Virology 93:1387-1395. PMID: 33150973
  15. Hassett C, Gedansky A, Migdady I et al. (2020) Neurologic complications of COVID-19. Cleveland Clinic Journal of Medicine 87:729-734. PMID: 32847818
  16. Hellwig M, Maia A (2021) A COVID-19 prophylaxis? Lower incidence associated with prophylactic administration of ivermectin. International Journal of Antimicrobial Agents 57:106248. PMID: 33259913
  17. Hess D, Eldahshan W, Rutkowski E (2020) COVID-19-related stroke. Translational Stroke Research 11:322-325. PMID: 32378030
  18. Hoffmann M, Kleine-Weber H, Schroeder S et al. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271-280. PMID: 32142651
  19. Hu B, Huang S, Yin L (2021) The cytokine storm and COVID-19. Journal of Medical Virology 93:250-256. PMID: 32592501
  20. Hunt R, East J, Lanas A et al. (2021) COVID-19 and gastrointestinal disease: implications for the gastroenterologist. Digestive Diseases 39:119-139. PMID: 33040064
  21. Jacobs J, Eichbaum Q (2021) COVID-19 associated with severe autoimmune hemolytic anemia. Transfusion 61:635-640. PMID: 33274459
  22. Khehra N, Padda I, Jaferi U et al. (2021) Tozinameran (BNT162b2) vaccine: the journey from preclinical research to clinical trials and authorization. AAPS PharmSciTech 22:172. PMID: 34100150
  23. Lehrer S, Rheinstein P (2020) Ivermectin docks to the SARS-CoV-2 spike receptor-binding domain attached to ACE2. In Vivo 34:3023-3026. PMID: 32871846
  24. Levy T (2002) Curing the Incurable. Vitamin C, Infectious Diseases, and Toxins. Henderson, NV: MedFox Publishing
  25. Levy T (2017) Hidden Epidemic: Silent oral infections cause most heart attacks and breast cancers. Henderson, NV: MedFox Publishing. Free eBook download available at https://hep21.medfoxpub.com/
  26. Levy T (2020) Vaccinations, Vitamin C, Politics, and the Law. Orthomolecular Medicine News Service, January 20, 2020. http://orthomolecular.org/resources/omns/v16n05.shtml
  27. Levy T (2020) COVID-19: How can I cure thee? Let me count the ways. Orthomolecular Medicine News Service, July 18, 2020. http://orthomolecular.org/resources/omns/index.shtml
  28. Levy T (2021) Rapid Virus Recovery: No need to live in fear! Henderson, NV: MedFox Publishing. Free eBook download available at https://rvr.medfoxpub.com/
  29. Levy T (2021) Hydrogen peroxide nebulization and COVID resolution. Orthomolecular Medicine News Service, May 10, 2021. http://orthomolecular.org/resources/omns/index.shtml
  30. Lima-Martinez M, Boada C, Madera-Silva M et al. (2021) COVID-19 and diabetes: a bidirectional relationship. Clinica e Investigacion en Arteriosclerosis 33:151-157. PMID: 33303218
  31. Liu Y, Sawalha A, Lu Q (2021) COVID-19 and autoimmune diseases. Current Opinion in Rheumatology 33:155-162. PMID: 33332890
  32. Maiti S, Banerjee A (2021) Epigallocatechin gallate and theaflavin gallate interaction in SARS-CoV-2 spike-protein central channel with reference to the hydroxychloroquine interaction: bioinformatics and molecular docking study. Drug Development Research 82:86-96. PMID: 32770567
  33. McDonald L (2021) Healing after COVID-19: are survivors at risk for pulmonary fibrosis? American Journal of Physiology. Lung Cellular and Molecular Physiology 320:L257-L265. PMID: 33355522
  34. Mendelson M, Nel J, Blumberg L et al. (2020) Long-COVID: an evolving problem with an extensive impact. South African Medical Journal 111:10-12. PMID: 33403997
  35. Mishra A, Lal A, Sahu K et al. (2020) An update on pulmonary hypertension in coronavirus disease-19 (COVID-19). Acta Bio-Medica 91:e2020155. PMID: 33525228
  36. Munoz J, Ballester M, Antonijoan R et al. (2018) Safety and pharmacokinetic profile of fixed-dose ivermectin with an innovative 18 mg tablet in healthy adult volunteers. PLoS Neglected Tropical Diseases 12:e0006020. PMID: 29346388
  37. Pan B, Fang S, Zhang J et al. (2020) Chinese herbal compounds against SARS-CoV-2: puerarin and quercetin impair the binding of viral S-protein to ACE2 receptor. Computational and Structural Biotechnology Journal 18:3518-3527. PMID: 33200026
  38. Pandey P, Rane J, Chatterjee A et al. (2020) Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. Journal of Biomolecular Structure & Dynamics Jul 22. Online ahead of print. PMID: 32698689
  39. Perisetti A, Gajendran M, Mann R et al. (2020) COVID-19 extrapulmonary illness-special gastrointestinal and hepatic considerations. Disease-A-Month 66:101064. PMID: 32807535
  40. Pasqualetto M, Sorbo M, Vitiello M et al. (2020) Pulmonary hypertension in COVID-19 pneumoniae: It is not always as it seems. European Journal of Case Reports in Internal Medicine 7:002160. PMID: 33457379
  41. Perrotta F, Matera M, Cazzola M, Bianco A (2020) Severe respiratory SARS-CoV2 infection: Does ACE2 receptor matter? Respiratory Medicine 168:105996. PMID: 32364961
  42. Pillay T (2020) Gene of the month: the 2019-nCoV/SARS-CoV-2 novel coronavirus spike protein. Journal of Clinical Pathology 73:366-369. PMID: 32376714
  43. Potus F, Mai V, Lebret M et al. (2020) Novel insights on the pulmonary vascular consequences of COVID-19. American Journal of Physiology. Lung Cellular and Molecular Physiology 319:L277-L288. PMID: 32551862
  44. Raveendran A (2021) Long COVID-19: Challenges in the diagnosis and proposed diagnostic criteria. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 15:145-146. PMID: 33341598
  45. Roth N, Kim A, Vitkovski T et al. (2021) Post-COVID-19 cholangiopathy: a novel entity. The American Journal of Gastroenterology 116:1077-1082. PMID: 33464757
  46. Saha J, Raihan M (2021) The binding mechanism of ivermectin and levosalbutamol with spike protein of SARS-CoV-2. Structural Chemistry Apr 12. Online ahead of print. PMID: 33867777
  47. Saponaro F, Rutigliano G, Sestito S et al. (2020) ACE2 in the era of SARS-CoV-2: controversies and novel perspectives. Frontiers in Molecular Biosciences 7:588618. PMID: 33195436
  48. Sawalha K, Abozenah M, Kadado A et al. (2021) Systematic review of COVID-19 related myocarditis: insights on management and outcome. Cardiovascular Revascularization Medicine: Including Molecular Interventions 23:107-113. PMID: 32847728
  49. Sehailia M, Chemat S (2020) Antimalarial-agent artemisinin and derivatives portray more potent binding to Lys353 and Lys31-binding hostpots of SARS-CoV-2 spike protein than hydroxychloroquine: potential repurposing of artenimol for COVID-19. Journal of Biomolecular Structure & Dynamics Jul 22. Online ahead of print. PMID: 32696720
  50. Seymen C (2021) The other side of COVID-19 pandemic: effects on male fertility. Journal of Medical Virology 93:1396-1402. PMID: 33200417
  51. Shang J, Wan Y, Luo C et al. (2020) Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America 117:11727-11734. PMID: 32376634
  52. Wang N, Han S, Liu R et al. (2020) Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV spike pseudotyped virus. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 79:153333. PMID: 32920291
  53. Yang J, Lin S, Ji X, Guo L (2010) Binding of SARA coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetologica 47:193-199. PMID: 19333547
  54. Zeppa S, Agostini D, Piccoli G et al. (2020) Gut microbiota status in COVID-19: an unrecognized player? Frontiers in Cellular and Infection Microbiology 10:576551 PMID: 333245

Latest Lancet Study Exposes Limits Of Vaccines At Preventing COVID Infection

FRIDAY, OCT 29, 2021 – 05:45 PM

The Lancet has just released another study comparing the efficacy of COVID vaccines to the efficacy of protection provided by previous COVID infections. Their conclusion: while vaccines lower the risk of infections with the delta variant within households, those who are fully vaccinated are still vulnerable to a ‘breakthrough’ infection if somebody they live with gets infected.

What’s more, people who have been vaccinated against COVID can be equally as infectious as the unvaccinated, the study showed.

The new study, which was published Thursday in the Lancet, the British medical journal that published some of the earliest research on COVID, is one of few to use detailed infection data from actual examples of household transmission, and it showed that – as we noted above – the viral loads of both vaccinated and unvaccinated patients infected with COVID are “broadly similar”.

The study involved 621 people in the UK with mild COVID infections, identified via the UK’s contact-tracing system.

The data showed that vaccination status doesn’t make a whole lot of difference in the ability to pass COVID on to others.

Roughly 25% of vaccinated household members subsequently tested positive for the virus after close contact with a fellow household member with a confirmed case of COVID. That’s compared with 38% of infection for people who haven’t been vaccinated.

These data show that the delta variant has a “greater capability for breaching the vaccine’s defenses when compared with predecessors.

“Our findings show that vaccination alone is not enough to prevent people from being infected with the Delta variant and spreading it in household settings,” said Professor Ajit Lalvani of Imperial College London, the co-leader of the study.

The study’s author said the lower transmission rates between vaccinated patients is just another reason to get the jab – although not a particularly compelling one.

“The ongoing transmission we are seeing between vaccinated people makes it essential for unvaccinated people to get vaccinated to protect themselves from acquiring infection and severe Covid-19, especially as more people will be spending time inside in close proximity during the winter months,” he said.

The study also underlines the importance of the vulnerable to get booster shots, since it also shows that vaccine immunity wanes with time.

“We found that susceptibility to infection increased already within a few months after the second vaccine dose – so those eligible for Covid-19 booster shots should get them promptly,” the professor said.

Following a summary of its findings, the Lancet wrote the “interpretation” of the study: “Vaccination reduces the risk of delta variant infection and accelerates viral clearance. Nonetheless, fully vaccinated individuals with breakthrough infections have peak viral load similar to unvaccinated cases and can efficiently transmit infection in household settings, including to fully vaccinated contacts. Host–virus interactions early in infection may shape the entire viral trajectory.”

Vaccinated just as likely to spread delta variant within household as unvaccinated: study

Authors: BY CAROLINE VAKIL – 10/29/21 09:07 AM EDT

People who have received COVID-19 vaccinations are able to spread the delta variant within their household despite their vaccination status just as easily as unvaccinated individuals, a new study published on Friday shows.

According to the study published in The Lancet Infectious Diseases journal, people who contracted COVID-19 had a similar viral load regardless of whether they had been vaccinated. The study further found that 25 percent of vaccinated household contacts contracted COVID-19. while 38 percent of unvaccinated individuals were diagnosed with the disease.

Researchers examined 621 symptomatic participants in the United Kingdom over a year.

“Although vaccines remain highly effective at preventing severe disease and deaths from COVID-19, our findings suggest that vaccination is not sufficient to prevent transmission of the delta variant in household settings with prolonged exposures,” the study said.

In contrast, researchers noted that the vaccination was more effective at curbing transmission of the alpha variant within the household, at between 40 and 50 percent. 

“Increasing population immunity via booster programmes and vaccination of teenagers will help to increase the currently limited effect of vaccination on transmission, but our analysis suggests that direct protection of individuals at risk of severe outcomes, via vaccination and non-pharmacological interventions, will remain central to containing the burden of disease caused by the delta variant,” the researchers wrote.

The study comes as the United States has started to see a nationwide decline in COVID-19 cases, though it remains unclear if this decline will be permanent or if a resurgence of cases could come back in the winter. 

Earlier this month, former Food and Drug Administration Commissioner Scott Gottlieb predicted that the “pandemic phase” of the COVID-19 will end with the approval of antiviral pills and COVID-19 vaccines for children and that the U.S. would soon transition into an “endemic” phase instead as Americans learn to live with the virus.

Scientists push back on call to endorse booster shots for all

Authors: By Ariel Hart,  Helena Oliviero– The Atlanta Journal-Constitution

Responding to the resurging pandemic and breakthrough infections, President Biden and some top health officials are pushing for the U.S. to begin vaccine booster shots by Sept. 20. But the committee of scientists who officially recommend whether to take such steps met Monday and pushed back.

The scientists said they still had fundamental questions to answer, such as whether the increase in COVID-19 infections after vaccination, so-called breakthrough cases, was related at all to waning effectiveness of the vaccines.

When the Sept. 20 date was announced “it led everyone—it led physicians, it led the public—to believe that they had access to information about these vaccines and the need for boosters that had not yet been publicly released,” said Dr. Sandra Fryhofer of Atlanta, a nonvoting member of the committee. “And to me, that kind of opened the door to a lot of confusion.”

The group, the Advisory Committee on Immunization Practices, advises the Centers for Disease Control and Prevention on whether scientific data merit approval or warnings on vaccines. From the moment its chairwoman opened Monday’s meeting, members made blunt statements that they would follow scientific data and processes on booster shots, regardless.

Other scientists were glad to hear it.

“There is a process that is being undermined by ‘science by leak,’” said Dr. Felipe Lobelo of Emory University, an epidemiologist and associate professor told the AJC. “We don’t really have strong data on when the waning starts; on whether the increased rates of infection and so called breakthrough infections…are occurring because of this waning effect— or is it because delta is more transmissible? Or is it because people are changing behaviors?”

Dr. Carlos del Rio, professor of medicine at Emory University, agreed. “The problem is by focusing on boosters we’re distracting from the biggest problem, which is all the unvaccinated people,” he said.

Without calling them “booster shots,” the FDA has authorized an extra shot for certain people with compromised immune systems, like organ transplant recipients, after they have completed their original coronavirus vaccine regimen. But no decisions have been made for other vulnerable groups, much less the general public.

That leaves Georgians who are now eager for a booster shot not knowing what comes next.

In Avondale Estates, Carolyn Chandler, 80, has marked her calendar for Oct. 16, the day she should get a booster if they’re recommended eight months from initial vaccination, as federal officials have touted.

Ever since Chandler started to see reports showing waning immunity from the vaccines, there was no question for her that she would get a booster.

“I just would like to stick around for a while,” Chandler said.

Durability of mRNA-1273 vaccine–induced antibodies against SARS-CoV-2 variants

  1. Authors: ViewAmarendra Pegu1,†, Sarah O’Connell1,† View ORCID ProfileStephen D. Schmidt1,, Sijy O’Dell1,View ORCID ProfileChloe A. Talana1, Lilin Lai2, Jim Albert Science  12 Aug 2021: eabj4176m OI: 10.1126/science.abj4176

Abstract

SARS-CoV-2 mutations may diminish vaccine-induced protective immune responses, particularly as antibody titers wane over time. Here, we assess the impact of SARS-CoV-2 variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.429 (Epsilon), B.1.526 (Iota), and B.1.617.2 (Delta) on binding, neutralizing, and ACE2-competing antibodies elicited by the vaccine mRNA-1273 over seven months. Cross-reactive neutralizing responses were rare after a single dose. At the peak of response to the second vaccine dose, all individuals had responses to all variants. Binding and functional antibodies against variants persisted in most subjects, albeit at low levels, for 6-months after the primary series of the mRNA-1273 vaccine. Across all assays, B.1.351 had the lowest antibody recognition. These data complement ongoing studies to inform the potential need for additional boost vaccinations.

SARS-CoV-2, the virus that causes COVID-19, has infected millions of people worldwide fueling the ongoing global pandemic (1). The combination of RNA virus mutation rates, replication and recombination, in a very large number of individuals is conducive to the emergence of viral variants with improved replication capacity and transmissibility, as well as immunological escape. Of particular interest are the Variants of Concern B.1.1.7 (20I/501Y.V1 or Alpha), B.1.351 (20H/501Y.V2 or Beta), P.1 (Gamma; first identified in Brazil), B.1.429 (Cal20 or Epsilon; first identified in California), and B.1.617.2 (Delta; first identified in India); and Variant of Interest B.1.526 (Iota; first identified in New York). In multiple studies, B.1.351 is the most resistant to neutralization by convalescent or vaccinee sera, with 6-15 fold less neutralization activity for sera from individuals immunized with vaccines based on the virus strain first described in January 2020 (Wuhan-Hu-1, spike also called WA1) (29). Most of these prior studies evaluated sera from vaccinated individuals at timepoints soon after the first or second dose, and had limited data on the durability of such responses. Likewise, clinical studies have reported somewhat reduced efficacy and effectiveness against the B.1.1.7, B.1.351, and B.1.617.2 variants (1012). Although such data provide critical insights into the performance of the vaccines against viral variants, they have not fully addressed the durability of cross-reactive binding and functional antibodies.

Here we investigate the impact of SARS-CoV-2 variants on recognition by sera from individuals who received two 100 mcg doses of the SARS-CoV-2 vaccine mRNA-1273. mRNA-1273 encodes the full-length stabilized spike protein of the WA1 and was administered as a two-dose series 28-days apart. We previously described the binding and neutralization activity against the WA1 SARS-CoV-2 spike longitudinally over 7 months from the first vaccination in volunteers from the Phase 1 trial of the mRNA-1273 vaccine (1316). In the current study, we demonstrate the utility of employing multiple methodologies to assess SARS-CoV-2 vaccine-elicited humoral immunity to variant viruses over time. We tested sera from a random sample of 8 volunteers in each of three age groups: 18-55, 55-70, and 71+ years of age, all of whom had samples available from four timepoints: 4 weeks after the first dose, and two weeks, 3 months, and 6 months after the second dose (Days 29, 43, 119, and 209 after the first dose, respectively).

Three functional assays and two binding assays were used to assess the humoral immune response to the SARS-CoV-2 spike protein. SARS-CoV-2 neutralization was measured using both a lentivirus-based pseudovirus assay, and a live-virus focus reduction neutralization test (FRNT) (17). The third functional assay was a MSD-ECLIA (Meso Scale Discovery-Electrochemiluminescence immunoassay)-based ACE2 competition assay. This method measured the ability of mRNA-1273 vaccine-elicited antibodies to compete with labeled soluble ACE2 for binding to the specific RBD (WA1 or variant) spotted onto the MSD plate. Antibody binding to cell-surface expressed full-length spike was analyzed by flow cytometry. Binding to soluble protein was measured by interferometry in the MSD-ECLIA platform. All samples were assessed against WA1 and the B.1.1.7 and B.1.351 variants in each of these orthogonal serology assays. In addition, all samples were tested against WA1 containing the D614G mutation in both neutralization assays, as well as binding in the cell-surface assay. Further variants were tested in binding assays as follows: S-2P and RBD binding, P.1 against all samples; cell-surface spike binding, P.1, B.1.429, B.1.526, and B.1.617.2 against all samples. A subset of samples – Day 43 to capture the peak response, and Day 209 to look at durability – were evaluated by pseudovirus neutralization against P.1, B.1.429, B.1.526, and B.1.617.2. The specific sequences used in each assay are defined in table S1.

We first assessed the patterns of antibody activity over time. Consistently across assays, low-level recognition of all variants was observed after a single dose (Day 29) (Fig. 1). Activity against all variants peaked two weeks after the second dose (Day 43) with moderate declines over time through Day 209 (Fig. 1). Notably, the values obtained for each assay on a per-sample basis correlated with each other (fig. S1). We next evaluated the relative impact of each variant, considering all timepoints together. Employing the pseudovirus assay, the neutralizing activity was highest against D614G and lowest against B.1.351, with values for all other variants tested falling in between those two variants (Fig. 1A and Fig. 2A). Similar to previous reports from our group (15) and others (18), pseudovirus neutralization ID50s to D614G were 3-fold higher than to WA1 (Fig. 2G). In contrast, using the live-virus FRNT neutralization assay (Fig. 1B and Fig. 2B), titers to WA1 were higher than to D614G, consistent with previous reports for that assay (19). For all other variants, the impact in the live-virus and pseudovirus neutralization assays were concordant: titers against B.1.1.7 were similar to D614G and lower against B.1.351. ACE2 competition was highest for WA1 RBD, intermediate for B.1.1.7, and lowest for B.1.351 (Fig. 1C and Fig. 2C). Spike-binding antibodies were measured using two different methodologies. In the cell-surface spike binding assay, serum antibodies were bound to full-length, membrane-embedded spike on the surface of transfected cells and measured by flow cytometry (20). In this assay (Fig. 1D and Fig. 2D), WA1 and D614G were nearly indistinguishable, with ~1.5-fold reduced binding to B.1.1.7, B.1.526, B.1.617.2, and 2.4 to 3.0-fold reduced binding to P.1, and B.1.429, and B.1.351. We also used the MSD-ECLIA multiplex binding assay to simultaneously measure IgG binding against both the stabilized soluble spike protein S-2P (21) and RBD proteins derived from WA1 and the B.1.1.7, B.1.351, and P.1 variants. The ECLIA assay showed slightly reduced binding to the variant S-2P (Fig. 1E and Fig. 2E) and RBD (Fig. 1F and Fig. 2F) proteins, with the rank order of highest to lowest binding as follows: WA1, B.1.1.7, P.1, and B.1.351. The overall effect of each variant in each assay is tabulated in Fig. 2G, which shows the geometric mean of the ratios between values for WA1 and variant or D614G and variant. In all assays, B.1.351 was the variant that caused the greatest reduction in titers compared to WA1 or D614G.

For More Information: https://science.sciencemag.org/content/early/2021/08/11/science.abj4176.full

New Israeli Study Finds Fully Vaccinated People are at “Greater Risk of Hospitalization” and 13 TIMES MORE LIKELY to Catch Covid-19 Than Those Who Have Recovered and Have Natural Immunity

Authors: By Julian Conradson Published August 27, 2021 at 2:06pm

A new study out of Israel has seemingly confirmed that individuals who have natural immunity have better protection against the NEW DELTA VARIANT than people who are fully vaccinated.

The team of researchers, from Maccabi Healthcare and Tel Aviv University, published their study earlier this week to medRxiv.org.

‘This study demonstrated that natural immunity confers longer lasting and stronger protection against infection, symptomatic disease and hospitalization caused by the Delta variant of SARS-CoV-2, ‘ the team of researchers wrote

Not just a little bit better either. People who have taken both doses of the Pfizer jab are 13 TIMES more likely to have a breakthrough infection, and are even at a “greater risk for Covid-19 hospitalizations.”

The researchers conducted an extensive study on 800,000 individuals that were broken into 3 groups. People who had received either one or two doses of the Pfizer-BioNTech COVID-19 vaccine were compared with unvaccinated individuals who have natural immunity, because they had already recovered from the virus.

SARS-CoV-2-naïve vaccinees had a 13.06-fold (95% CI, 8.08 to 21.11) increased risk for breakthrough infection with the Delta variant compared to those previously infected, when the first event (infection or vaccination) occurred during January and February of 2021. The increased risk was significant (P<0.001) for symptomatic disease as well. 

When allowing the infection to occur at any time before vaccination (from March 2020 to February 2021), evidence of waning natural immunity was demonstrated, though SARS-CoV-2 naïve vaccinees had a 5.96-fold (95% CI, 4.85 to 7.33) increased risk for breakthrough infection and a 7.13-fold (95% CI, 5.51 to 9.21) increased risk for symptomatic disease. SARS-CoV-2-naïve vaccinees were also at a greater risk for COVID-19-related-hospitalizations compared to those that were previously infected.

MOST NOTABLY, the study also found – Three months after a 2nd dose, the risk of contracting Covid was 13.06 times higher among the vaccinated and they are 27 TIMES more likely to experience symptoms.

After adjusting for comorbidities, we found a 27.02-fold risk (95% CI, 12.7 to 57.5) for symptomatic breakthrough infection as opposed to symptomatic reinfection (P<0.001) (Table 2b). None of the covariates were significant, except for age ≥60 years. 

So, to get this straight – According to these highly credible researchers who conducted a massive study on hundreds of thousands of people, the Pfizer-BioNTech vaccine won’t just make people more likely to catch new variants – they will also be more affected by symptoms and more likely to end up hospitalized.

This latest data just adds to a mounting pile of evidence that demonstrates the experimental jab’s low efficacy when it comes to stopping the spread of the virus. Even before this most recent study, some researchers had already found that the vaccinated spread the virus as much, if not more, than the unvaxxed.

The FDA skipped out on necessary trials and rubber-stamped their experimental jab anyway.

According to available data, a third of the entire US population had contracted Covid BY THE END OF 2020.

Natural immunity is not new.. It has consistently proven to be superior to inoculation. If 1/3rd of Americans had already contracted the virus – before it had even been known for a full year – then why would “everyone” need to take their experimental vaccine?

Well…

The authoritarian health regime in the US, led by Furor Dr. Fauci, has been flip-flopping since their comrades in thee CCP unleashed the virus on the world.

They are wholly unconcerned with saving anyone and are fully invested in using lockdowns and freedom-crushing restrictions to tighten their grip on power. 

Mindless compliance hasn’t worked so now they must start forcing people in other ways.

U.S. data show rising ‘breakthrough’ infections among fully vaccinated

Authors:Julie SteenhuysenTue, August 24, 2021, 2:15 PM·2 min read

CHICAGO (Reuters) – Some 25% of SARS-CoV-2 infections among Los Angeles County residents occurred in fully vaccinated residents from May through July 25, a period that includes the impact of the highly transmissible Delta variant, U.S. officials reported on Tuesday.- ADVERTISEMENT –

The data, published in the U.S. Centers for Disease Control and Prevention’s weekly report on death and disease, shows an increase in so-called “breakthrough” infections among fully vaccinated individuals.

The CDC is relying on data from cohorts, such as the Los Angeles County study, to determine whether Americans need a third dose of COVID-19 vaccines to increase protection. Government scientists last week laid out a strategy for booster doses beginning on Sept. 20, pending reviews from the U.S. Food and Drug Administration and the CDC.

The new data released on Tuesday involved more than 43,000 reported infections among Los Angeles County residents aged 16 and older. Of them, 10,895, or 25.3%, occurred in fully vaccinated persons, 1,431, or 3.3%, were in partially vaccinated persons, and 30,801, or 71.4%, were in unvaccinated individuals.

The vaccines did, however, protect individuals from more severe cases. According to the study, 3.2% of fully vaccinated individuals who were infected with the virus were hospitalized, just 0.5% were admitted to an intensive care unit and 0.2% were placed on a ventilator.

Among the unvaccinated who fell ill, 7.5% were hospitalized, 1.5% were admitted to an intensive care unit and 0.5% required breathing support with a mechanical ventilator.

In addition to the LA County data, the CDC on Tuesday released an update on the HEROES cohort study among healthcare workers that showed a significant drop in vaccine effectiveness among vaccinated frontline workers in eight states who became infected with the coronavirus.

Vaccine efficacy during the period of the study when Delta was predominant fell to 66% from 91% prior to the arrival of the Delta variant, according to the report.

“We Don’t Understand What’s Really Happening” – The CDC Is Under-Counting ‘Breakthrough’ COVID Cases

Authors: BY TYLER DURDENWEDNESDAY, AUG 25, 2021 – 01:04 PM

A growing number of public health officials working at the state level are worried that the federal government isn’t collecting enough accurate data about “breakthrough” infections, yet the Biden Administration has pushed ahead with plans to dole out booster shots, as well as other COVID policies.

According to Politico, 49 states are now regularly sending CDC information on hospitalized breakthrough patients. But more than a dozen have told Politico that they do not have the capacity to match hospital admission data with patients’ immunization records, forcing states to rely on hospital administrators to report breakthrough infections.

The result is data that is often aggregated, inaccurate and missing critical details like which vaccine the consumer received . Instead, those states rely on hospital administrators to report breakthrough infections. The resulting data is often aggregated, inaccurate and omits critical details for teasing out trends, such as which vaccine a person received and whether they have been fully vaccinated, a dozen state officials said.

The fact that the CDC and public health departments across the country are still struggling to collect data on breakthrough infections is almost embarrassing, considering we’re more than 18 months into the pandemic at this point, and scientists have repeatedly warned about the necessity of being prepared for the Omega Death Variant which is right around the corner, according to Dr. Fauci’s latest fearmongering blitz.

“I think it would be really challenging [for the CDC] to interpret the results or to interpret the data when you have only some jurisdictions reporting [breakthrough infections],” said Theresa Sokol, lead epidemiologist for Louisiana’s state public health department, which is working closely with the CDC on studies of breakthrough infections. “I know that there are some jurisdictions that don’t even have access to their vaccination data. They don’t have the authority or their permission.”

Perhaps the biggest obstacle to collecting data on breakthrough infections is the balkanized nature of state health-care systems. States can’t communicate with other states. For years, states have pleaded with the federal government to upgrade these systems to no avail.

Last year, the CDC allocated a small amount of money (described by Politico as “tens of millions of dollars”) to help states upgrade their systems. But the CDC admits it will take years for the necessary upgrades to be made.

“Nothing has changed since the pandemic began,” one senior Biden health official said. “We’re still dealing with this patchwork system — and it continues to fail us.”

Of particular concern for health officials now is how rapidly the Delta variant spreads, whether it is reducing the effectiveness of vaccines and whether it causes more severe disease. Tracking breakthrough infections is a critical step toward arriving at all of these assessments.

To complement data on hospitalized cases from the 50-state reporting network, the CDC is conducting a smaller study with a subset of states to examine all of their breakthrough infections, including mild cases that don’t send people to the hospital. The states participating in this smaller study have the ability to match lab reports with immunization records, but they don’t maintain their own databases of hospitalization data. ;

“We report what we have, but we know that it’s limited because it’s based on a direct report from a provider — as opposed to taking a data set of all hospitalizations and matching that against our vaccine registry,” said Sokol, the Louisiana epidemiologist. “We’re not able to do that for hospitalization. We rely on individual reports from hospitals. And some report well, others do not. So we know that it’s not complete.”

[…]

“We don’t have a clear understanding of what the data actually says about the Delta variant, transmission and boosters,” one of those officials said.

To be sure, deliberately under-counting breakthrough infections has its advantages: for example, the Biden Administration can mask the number of breakthrough infections reported, making the vaccines appear more effective than they actually are.