FDA restricts J&J’s COVID-19 vaccine due to blood clot risk

Authrsors: Associated Press

WASHINGTON (AP) — U.S. regulators on Thursday strictly limited who can receive Johnson & Johnson’s COVID-19 vaccine due to the ongoing risk of rare but serious blood clots.

The Food and Drug Administration said the shot should only be given to adults who cannot receive a different vaccine or specifically request J&J’s vaccine. U.S. authorities for months have recommended that Americans starting their COVID-19 vaccinations use the Pfizer or Moderna shots instead.

FDA officials said in a statement that they decided to restrict J&J’s vaccine after taking another look at data on the risk of life-threatening blood clots within two weeks of vaccination.

J&J’s vaccine was initially considered an important tool in fighting the pandemic because it required only one shot. But the single-dose option proved less effective than two doses of the Pfizer and Moderna vaccines.

Under the new FDA instructions, J&J’s vaccine could still be given to people who had a severe allergic reaction to one of the other vaccines and can’t receive an additional dose. J&J’s shot could also be an option for people who refuse to receive the mRNA vaccines from Pfizer and Moderna, and therefore would otherwise remain unvaccinated, the agency said.

A J&J spokesman said in an emailed statement: “Data continue to support a favorable benefit-risk profile for the Johnson & Johnson COVID-19 vaccine in adults, when compared with no vaccine.”

Despite the restriction, FDA’s vaccine chief Dr. Peter Marks said J&J’s vaccine “still has a role in the current pandemic response in the United States and across the global community.”

The FDA based its decision on “our safety surveillance systems and our commitment to ensuring that science and data guide our decisions

Nearly 15 million deaths associated with COVID-19, WHO says

The clotting problems first came up last spring, with the J&J shot in the U.S. and with a similar vaccine made by AstraZeneca that is used in other countries. At that time, U.S. regulators decided the benefits of J&J’s one-and-done vaccine outweighed what was considered a very rare risk — as long as recipients were warned.

COVID-19 causes deadly blood clots, too. But the vaccine-linked kind is different, believed to form because of a rogue immune reaction to the J&J and AstraZeneca vaccines because of how they’re made. It forms in unusual places, such as veins that drain blood from the brain, and in patients who also develop abnormally low levels of the platelets that form clots. Symptoms of the unusual clots include severe headaches a week or two after the J&J vaccination — not right away — as well as abdominal pain and nausea.

The New Brunswick, New Jersey-based company announced last month that it didn’t expect a profit from the vaccine this year and was suspending sales projections.

The rollout of the company’s vaccine was hurt by a series of troubles, including manufacturing problems at a Baltimore factory that forced J&J to import millions of doses from overseas.

Additionally, regulators added warnings about the blood clots and a rare neurological reaction called Guillain-Barré syndrome.

Pfizer and Moderna have provided the vast majority of COVID-19 vaccines in the U.S. More than 200 million Americans have been fully vaccinated with the companies’ two-dose shots while less than 17 million Americans got the J&J shot.

‘Never Seen’ Before: Embalmers Finding Long, Rubbery Clots Inside Corpses Since Implementation of Covid Vaccines

By Cristina Laila September 4, 2022

Embalmers are finding long, rubbery clots inside of corpses since the implementation of Covid vaccines.

According to one Alabama embalmer who has been treating corpses for over 20 year, the strange fibrous clots emerged in May of 2021, shortly after the Covid vaccines first became available to the public.

“It wasn’t until May or June of last year that I started to say, ‘something is really different about the blood’ and then later in September, I took my first picture, since I couldn’t come out with just one piece of evidence because what if it’s just a fluke?” Alabama embalmer Richard Hirschmann told 1819 News. “Now, I have been gathering evidence and I have pictures of over 100 cases. And it’s not stopping. It’s not slowing down.”

Embalmers are finding long, rubbery clots inside of corpses since the implementation of Covid vaccines.

According to one Alabama embalmer who has been treating corpses for over 20 year, the strange fibrous clots emerged in May of 2021, shortly after the Covid vaccines first became available to the public.

“It wasn’t until May or June of last year that I started to say, ‘something is really different about the blood’ and then later in September, I took my first picture, since I couldn’t come out with just one piece of evidence because what if it’s just a fluke?” Alabama embalmer Richard Hirschmann told 1819 News. “Now, I have been gathering evidence and I have pictures of over 100 cases. And it’s not stopping. It’s not slowing down.”

The Epoch Times spoke to Richard Hirschmann and other embalmers who have all documented the same rubbery clots in corpses starting in 2021.

“In 20 years of embalming, I had never seen these white fibrous structures in the blood, nor have others in my field. In the past year, I have seen these strange clots in many different individuals, and it doesn’t seem to matter what they die of, they often have similar substances in their blood. This makes me very concerned because if something is wrong in the blood, it begs the question: is something causing people to die prematurely?” Hirschman told the Epoch Times.

Hirschmann said he has noticed that the blood in people’s bodies has changed in the last two years.

Mr. Hirschmann said he cannot confirm that the blood clots are caused by the Covid vaccines, but it is his hope that the clots are investigated.

Have all documented the same rubbery clots in corpses starting in 2021.

Several embalmers across the country have been observing many large, and sometimes very long, “fibrous” and rubbery clots inside the corpses they treat, and are speaking out about their findings.

Numerous embalmers from different states confirmed to The Epoch Times that they have been seeing these strange clots, starting from either 2020 or 2021.

It’s not yet known if the cause of the new clot phenomenon is COVID-19, vaccines, both, or something different.

The Epoch Times received videos and photos of the anomalous clots, but could not upload them due to the level of gore.

Mike Adams, who runs an ISO-17025 accredited lab in Texas, analyzed clots in August and found them to be lacking iron, potassium, magnesium, and zinc.

Adams’s lab uses inductively coupled plasma mass spectrometry (ICP-MS), triple quadrupole mass spectrometer, and liquid chromatography-mass spectrometry, usually testing food for metals, pesticides, and glyphosate.

“We have tested one of the clots from embalmer Richard Hirschman, via ICP-MS. Also tested side by side, live human blood from an unvaccinated person,” Adams told The Epoch Times.

He found that the clots are lacking key elements present in healthy human blood, such as iron, potassium, and magnesium, suggesting that they are formed from something other than blood.

Adams is joining analytic forces with more doctors and plan to invest out of their own pocket in equipment in order to further determine their composition and probable causation.

The string-like structures differ in size, but the longest can be as long as a human leg and the thickest can be as thick as a pinky finger.

“Game-changer” Paxlovid turns into pandemic enigma

Authors: Arielle Dreher Axios September 2, 2022

Paxlovid, once hailed as a “game-changer” for its ability to treat COVID-19 infections at home, is becoming one of the pandemic’s biggest enigmas.

The intrigue: There’s growing concern about the link between Pfizer’s antiviral pill and COVID rebound, in which patients test positive or have symptoms days after a course of the drug is completed. President Biden, First Lady Jill Biden and NIAID Director Anthony Fauci have each relapsed.

  • The FDA has asked Pfizer to investigate whether a second five-day course of the drug will prevent the virus from returning.
  • Pfizer executives in May suggested patients who can’t clear the virus with the first course should take more, Bloomberg reported.

The big picture: Paxlovid use surged over the summer, with as many as one-third of reported coronavirus cases treated with the drug.

  • But uncertainty over what’s causing the relapses, and whether the drug helps younger patients, is making some people wary of taking the treatment, physicians say.
  • At least part of the problem is that people are not routinely tested after taking Paxlovid, which makes it hard to establish how often rebound happens or why the virus lingers in some people, Leana Wen, an emergency physician and a professor at George Washington University, told CNN.
  • A large study of more than 109,000 people in the New England Journal of Medicine concluded the drug significantly reduced hospitalizations and deaths among patients aged 65 and older but that there was no evidence of benefit in younger adults.
  • The prospect of reinfection shouldn’t discourage older or high-risk patients from taking the pills, said Yale infectious diseases specialist Scott Roberts.
  • “Rebound is almost always more mild than initial course,” Roberts told Axios.
  • Paxlovid could have the added benefit of warding off long COVID, or symptoms that linger beyond the first 30 days after testing positive, and studies to determine this are underway.

But availability of the drug could change before clear answers emerge.

  • The Biden administration has only bought enough pills to supply Paxlovid through the middle of next year, after which it will transition to the commercial market, HHS Assistant Secretary for Preparedness and Response Dawn O’Connell wrote in a blog post on Tuesday.

Between the lines: COVID rebound has also been observed in people who have not taken Paxlovid, and some experts believe it might be a natural course of the infection to see symptoms ebb, then return.

  • COVID’s course “is not a purely linear process; it waxes and wanes a little bit,” said Jonathan Li, a Harvard Medical School researcher and co-author of a pre-print that found high levels of rebound in people who hadn’t been treated with the drug.

State of play: The CDC recommends Paxlovid for those over the age of 50, and for those with medical conditions like lung or heart disease that makes them high-risk, although the drug’s emergency authorization covers anyone 12 years old and up.

  • Research in Clinical Infectious Diseases found the drug remains effective for vaccinated people who contract COVID-19, reducing emergency room visits by lowering the risk of complications like lower respiratory tract infection and cardiac arrhythmia.
  • Beyond the Pfizer study requested by the FDA, a clinical trial of immunocompromised people is evaluating if Paxlovid should be used for five, 10 or 15 days.

What they’re saying: “The consensus by the vast majority of people caring for COVID patients is that the rebound is not really a side effect of Paxlovid, it is more that are we really treating people for long enough or not?” Sarju Ganatra, a cardiologist at Lahey Hospital and co-author of the Clinical Infectious Diseases study, told Axios.

Yes, but: “This is where having a well-designed, well-controlled study helps us understand disease better, and this is the challenge of anecdotal reports. Without a control, it’s really hard to know what’s actually happening,” said Kara Chew, an infectious disease physician at University of California Los Angeles.

The bottom line: Paxlovid remains an important tool to keep some people out of the hospitals, especially with the highly contagious Omicron variant still circulating and many people not staying current on boosters, experts said.

  • Isolation will also be critical as long as enough people are experiencing COVID rebound and stay infectious beyond the five-day isolation period recommended by the CDC.

Risk of Myocarditis After Sequential Doses of COVID-19 Vaccine and SARS-CoV-2 Infection by Age and Sex

Authors: Martina Patone, PhD; Xue W. Mei, PhD; Lahiru Handunnetthi, PhD; Sharon Dixon, MD; Francesco Zaccardi, PhD; Manu Shankar-Hari, PhD; Peter Watkinson, MD; Kamlesh Khunti, PhD; Anthony Harnden, PhD; Carol A.C. Coupland, PhD; Keith M. Channon, MD; Nicholas L. Mills, PhD; Aziz Sheikh, MD; Julia Hippisley-Cox, MD August 28, 2022 ORIGINAL RESEARCHARTICLECirculation. 2022;146:00–00. DOI: 10.1161/CIRCULATIONAHA.122.059970 xxx xxx, 20223Patone et al

BACKGROUND: Myocarditis is more common after severe acute respiratory syndrome coronavirus 2 infection than after COVID-19 vaccination, but the risks in younger people and after sequential vaccine doses are less certain.

METHODS:

A self-controlled case series study of people ages 13 years or older vaccinated for COVID-19 in England between December 1, 2020, and December 15, 2021, evaluated the association between vaccination and myocarditis, stratified by age and sex. The incidence rate ratio and excess number of hospital admissions or deaths from myocarditis per million people were estimated for the 1 to 28 days after sequential doses of adenovirus (ChAdOx1) or mRNA-based (BNT162b2, mRNA-1273) vaccines, or after a positive SARS-CoV-2 test.RESULTS: In 42842345 people receiving at least 1 dose of vaccine, 21242629 received 3 doses, and 5934153 had SARS-CoV-2 infection before or after vaccination. Myocarditis occurred in 2861 (0.007%) people, with 617 events 1 to 28 days after vaccination. Risk of myocarditis was increased in the 1 to 28 days after a first dose of ChAdOx1 (incidence rate ratio, 1.33 [95% CI, 1.09–1.62]) and a first, second, and booster dose of BNT162b2 (1.52 [95% CI, 1.24–1.85]; 1.57 [95% CI, 1.28–1.92], and 1.72 [95% CI, 1.33–2.22], respectively) but was lower than the risks after a positive SARS-CoV-2 test before or after vaccination (11.14 [95% CI, 8.64–14.36] and 5.97 [95% CI, 4.54–7.87], respectively). The risk of myocarditis was higher 1 to 28 days after a second dose of mRNA-1273 (11.76 [95% CI, 7.25–19.08]) and persisted after a booster dose (2.64 [95% CI, 1.25–5.58]). Associations were stronger in men younger than 40 years for all vaccines. In men younger than 40 years old, the number of excess myocarditis events per million people was higher after a second dose of mRNA-1273 than after a positive SARS-CoV-2 test (97 [95% CI, 91–99] versus 16 [95% CI, 12–18]). In women younger than 40 years, the number of excess events per million was similar after a second dose of mRNA-1273 and a positive test (7 [95% CI, 1–9] versus 8 [95% CI, 6–8]).CONCLUSIONS: Overall, the risk of myocarditis is greater after SARS-CoV-2 infection than after COVID-19 vaccination and remains modest after sequential doses including a booster dose of BNT162b2 mRNA vaccine. However, the risk of myocarditis after vaccination is higher in younger men, particularly after a second dose of the mRNA-1273 vaccine.

We recently reported an association between the first and second dose of COVID-19 vaccination and myocarditis, which generated considerable scientific, policy, and public interest.1 It added to evidence emerging from multiple countries that has linked exposure to BNT162b2 mRNA vaccine with acute myocarditis.2–8In the largest and most comprehensive analysis to date, we reported an increased risk of hospital admission or death from myocarditis after both adenoviral (ChAdOx1) vaccines and mRNA (BNT162b2 or mRNA-1273) vac-cines. It is important that we also demonstrated across the entire vaccinated population in England that the risk of myocarditis after vaccination was small compared with the risk after a positive SARS-CoV-2 test.1However, myocarditis is more common in younger people younger than the age of 40 years and in men in particular.9,10 Additional analyses stratified by age and sex are important because vaccine campaigns are rap-idly being extended to include children and young adults. Furthermore, given the consistent observation that the risk of myocarditis is higher after the second dose of vac-cine compared with the first dose,1,11 there is an urgent need to evaluate the risk associated with a booster dose because booster programs are accelerated internation-ally to combat the omicron variant.12Because new data were available, we have extended our analysis to include people ages 13 years or older and those receiving a booster dose to further evaluate the association between COVID-19 vaccination or infection and risk of myocarditis, stratified by age and sex.

METHODS

Transparency and Openness Promotion This analysis makes use of multiple routinely collected health care data sources that were linked, deidentified, and held in a trusted research environment that was accessible to approved individuals who had undertaken the necessary governance training. Because of the sensitive nature of the data collected for this study, requests to access the dataset from qualified researchers trained in human subject confidentiality proto-cols may be sent to National Health Service Digital and the United Kingdom Health Security Agency. Simulated data and the analysis code are available publicly at https://github.com/qresearchcode/COVID-19-vaccine-safety. National Health Service Research Ethics Committee approval was obtained from the East Midlands–Derby Research Ethics Committee (Reference 18/EM/0400]. Anonymized data are analyzed, so there is no requirement for written informed consent. Data Sources We used the National Immunisation Database of COVID-19 vaccination to identify vaccine exposure. This includes vaccine type, date, and doses for all people vaccinated in England. We linked National Immunisation Database vaccination data, at the individual level, to national data for mortality (Office for National Statistics), hospital admissions (Hospital Episode Statistics and Secondary User’s service data), and SARS-CoV-2 infection data (Second Generation Surveillance System).Study Design and Oversight We undertook a self-controlled case series design, originally developed to examine vaccine safety.12 The analyses are conditional on each case, so any fixed characteristics during the study period, such as sex, ethnicity, or chronic conditions, are inherently controlled for. Age was considered as a fixed variable because the study period was short. Any time-varying factors, such as seasonal variation, need to be adjusted for in the analy-ses. Hospital admissions were likely to be influenced by the pressure on the health systems because of COVID-19, which was not uniform during the pandemic study period. To allow for these underlying seasonal effects, we split the study observation period into weeks and adjusted for week as a factor vari-able in the statistical models.Study Period and Population We included all people ages 13 years or older who had received at least 1 dose of ChAdOx1 (AstraZeneca), BNT162b2 (Pfizer), and mRNA-1273 (Moderna) vaccine and were admit-ted to hospital or died from myocarditis between December 1, 2020, and December 15, 2021.OutcomeThe primary outcome of interest was the first hospital admis-sion caused by the myocarditis, or death recorded on the death Clinical PerspectiveWhat Is New?•We performed an evaluation of the risk of myocar-ditis after COVID-19 vaccine in >42 million vacci-nated people 13 years or older, including 21 million people receiving a booster dose, stratified by age and sex.•We extend our previous findings demonstrating that the risk of hospitalization or death from myo-carditis after SARS-CoV-2 infection is substantially higher than the risk associated with a first dose of ChAdOx1, and a first, second, or booster dose of BNT162b2 mRNA vaccine.

•Associations were stronger in younger men <40 years for all vaccines and after a second dose of mRNA-1273 vaccine, where the risk of myocarditis was higher after vaccination than SARS-CoV-2 infection. What Are the Clinical Implications?•Our findings will inform recommendations on the type of vaccine offered to younger people and will help to shape public health policy on booster pro-grams enabling an informed discussion of the risk of vaccine associated myocarditis when considering the net benefit of vaccination.

Myocarditis After COVID-19 Vaccine and Infection certificate with the International Classification of Diseases, Tenth Revision code (Table S1) related to myocarditis within the study period (December 1, 2020, to December 15, 2022). We used the earliest date of hospitalization or date of death as the event date.ExposuresThe exposure variables were a first, second, or booster dose of the ChAdOx1, BNT162b2, or mRNA-1273 vaccines, and SARS-CoV-2 infection, defined as the first SARS-CoV-2–positive test in the study period. All exposures were included in the same model. We defined the exposure risk intervals as the following prespecified time periods: 0, 1 to 7, 8 to 14, 15 to 21, and 22 to 28 days after each exposure date, under the assumption that the adverse events under consideration are unlikely to be related to exposure later than 28 days after expo-sure. A pre-risk interval of 1 to 28 days before each exposure date was included to account for potential bias that might arise if the occurrence of the outcome temporarily influenced the likelihood of exposure. The baseline period for the vaccination exposures was the remaining time from December 1, 2020, until 29 days before the first dose date and from 29 days after the first or second dose until 29 days before the second or booster dose (if applicable), and from 29 days after the booster dose until December 15, 2021, or the censored date if earlier. We assumed that the risks might be different after each vac-cine dose, and hence we allowed for a dose effect, by defining a separate risk interval after each dose: 0, 1 to 7, 8 to 14, 15 to 21, or 22 to 28 days after the first, second, or booster dose. To avoid overlapping risk periods, we assumed that later expo-sures take precedence over earlier ones, except for the 1- to 28-day pre-risk period for the second or booster dose. A posi-tive SARS-CoV-2 test was considered as a separate exposure in the models, which allowed overlapping risk windows with vaccination exposure.Statistical AnalysisWe described the characteristics of the whole study population by vaccine dose and type, and in those with myocarditis strati-fied by age and sex.In vaccinated people with myocarditis, the self-controlled case series models were fitted using a conditional Poisson regression model with an offset for the length of the expo-sure risk period. Incidence rate ratios (IRR), the relative rate of hospital admissions or deaths caused by myocarditis in expo-sure risk periods relative to baseline periods, and their 95% CIs were estimated by the self-controlled case series model adjusted for calendar time. We investigated if associations between vaccine exposure and the myocarditis outcome were sex- or age-dependent by performing subgroup analyses strati-fied by sex and age (men age <40 years, men age≥ 40 years, women age <40 years, and women age ≥40 years). We also conducted analyses stratified by vaccination history, restricted to those who had the same type of vaccine in the first and sec-ond dose and by lag in days between the first and second dose (≤65, 66 to 79, and ≥80 days).We conducted sensitivity analyses to assess the robustness of results to assumptions, such as that the occurrence of an outcome event did not influence the probability of subsequent exposures by (1) excluding those who died from the outcome and (2) restricting analysis to the period after the first dose and (3) after the second dose, without censoring at death; and to assess potential reporting delays in the data by (4) restricting the study to the period up to December 1, 2021.We also performed sensitivity analyses (5) removing patients who had outcomes in the 28 days after a first dose, but before a second dose, and (6) removing patients who had outcomes in the 28 days after a second dose, but before a booster dose, because they are less likely to have a second dose if they experienced an adverse event after the first. Last, we conducted a sensitivity analysis (7) restricted to those with-out a positive SARS-CoV-2 test during the observation period.We used Stata (version 17) for these analyses.

RESULTS

Between December 1, 2020, and December 15, 2021, there were 42 842 345 people vaccinated with at least 1 dose of ChAdOx1 (n=20 650 685), BNT162b2 (n=20 979 704), or mRNA-1273 (n=1 211 956) (Table 1). Of these, 39 118 282 received a sec-ond dose of ChAdOx1 (n=20 080 976), BNT162b2 (n=17 950 086), or mRNA-1273 (n=1 087 220), and 21 242 629 people received a third vaccine dose: ChAdOx1 (n=53 606), BNT162b2 (n=17 517 692), and mRNA-1273 (n=3 671 331).Among people receiving at least 1 vaccine dose, 5 934 153 (13.9%) tested positive for SARS-CoV-2, including 2 958 026 (49.8%) before their first vac-cination.Of the 42 842 345 people in the study population, 2861 (0.007%) were hospitalized or died from myocar-ditis during the study period; 345 (<0.001%) patients died within 28 days from a hospital admission with myo-carditis or with myocarditis as cause of death recorded in the death certificate. A total of 617 (0.001%) of these events occurred 1 to 28 days after any dose of vaccine (Table 2). Of the 524 patients admitted to the hospital with myocarditis in the 1 to 28 days after any first or sec-ond vaccine dose, 151 (28.8%) had received a booster dose: 34.4% (79/230) of those who had ChAdOx1 in the first or second dose and 29.7% (72/243) of those who had BNT162b2 in the first or second dose (Table 2). Of the 5 934 153 patients with a SARS-CoV-2 infection, 195 (0.003%) were hospitalized or died with myocarditis in the 1 to 28 days after the positive test; 114 (58.5%) of these events occurred before vaccination (Table S2).Vaccine-Associated MyocarditisIn the study period, we observed 140 and 90 patients who were admitted to the hospital or died of myocardi-tis after a first and second dose of ChAdOx1 vaccine, respectively. Of these, 40 (28.6%) and 11 (12.2%)‚ re-spectively, died with myocarditis or within 28 days from hospital admission. Similarly, there were 124, 119, and 85 patients who were admitted to the hospital or died

After COVID-19 Vaccine and Infection Table 1.Baseline Demographic Characteristics of People Receiving ChAdOx1, BNT162b2, or mRNA-1273 Vaccines or Testing Positive for SARS-CoV-2 Virus (in Those Vaccinated) in England Between December 1, 2020, and December 15, 2021 ChAdOx1BNT162b2mRNA-1273ChAdOx1BNT162b2mRNA-1273ChAdOx1BNT162b2mRNA-1273SARS- CoV-2 positive*One dose (n=42 842 345)Two doses (n=39 118 282)Booster doses (n=21 242 629)(n= 5 934 153)% (n)% (n) % (n)% (n)% (n)% (n)% (n)% (n)% (n)% (n)Total no. of people20 650 68520 979 7041 211 95620 080 97617 950 0861 087 22053 60617 517 6923 671 3315 934 153SexWomen49.5(10 215 079)49.1(10 295 561)38.7(469 114)49.5(9 945 533)50.1(9 000 748)39.5(429 705)61.2(32 792)54.2(9 489 364)48.4(1 778 317)52.3(3 103 168)Men43.3(8 933 572)40.4(8 476 032)42.0(508 416)43.3(8 697 560)39.8(7 148 539)42.1(457 629)34.8(18 674)41.4(7 244 858)44.2(1 623 230)40.5(2 405 336)Not recorded7. 3(1 502 034)10.5(2 208 110)19.3(234 426)7. 2(1 437 882)10.0(1 800 799)18.4(199 886)4.0(2140)4.5(783 471)7. 3(269 784)7. 2(425 649)Age, yMean age (SD)54.9 (14.8)43.0 (22.4)32.3 (9.7)55.0 (14.7)46.5 (21.7)32.7 (9.8)63.1 (17.0)61.8 (15.9)53.7 (12.4)41.4 (18.0)13–17 <0.1(10 214)10.6(2 219 006)0.1(838)<0.1(9105)2.6(468 569)0.1 (623)0.1 (31)0.1(23 826)0.1(2961)8.3(493 728)18–29 5.2(1 081 177)24.4(5 127 151)43.1(521 916)5.1(1 022 847)24.9(4 472 159)41.3(449 436)3.7(1964)3.6(624 465)4.0(146 688)21.6(1 279 933)30–39 7. 9(1 634 841)21.5(4 517 781)35.6(431 515)7. 8(1 556 785)23.1(4 146 117)36.1(392 581)5.8(3102)6.1(1 067 916)8.6(315 936)18.3(1 084 406)40–49 22.1(4 564 393)8.5(1 784 664)18.4(222 849)22.0(4 414 864)9.3(1 665 983)19.5(212 187)11.5 (6171)11.1(1 949 092)19.2(706 004)19.4(1 152 196)50–59 2 7. 5(5 673 878)8.0(1 684 013)1.8(22 320)2 7. 6(5 549 187)9.1(1 636 430)1.9(20 463)19.9(10 644)20.8(3 635 337)35.3(1 295 168)16.7(989 499)60–69 19.8(4 083 887)8.5(1 777 370)0.7(8330)20.0(4 013 588)9.8(1 753 552)0.7(8145)19.3(10 371)22.5(3 938 515)24.8(910 586)8.5(505 389)70–79 13.4(2 763 041)9.4(1 979 901)0.3(3241)13.5(2 717 638)10.9(1 959 318)0.3(2789)22.6(12 090)23.1(4 049 042)6.5(237 287)4.2(248 415)80–89 3.1(630 457)7. 7(1 621 129)0.1(842)3.0(604 788)8.9(1 591 216)0.1(837)12.5 (6710)10.8(1 888 973)1.3(47 228)2.2(132 459)90+ 1.0(208 753)1.3(268 563)<0.1(103)1.0(192 162)1.4(256 698)<0.1(158)4.7(2523)1.9(340 498)0.3(9473)0.8(48 117)Not recorded<0.1 (44)<0.1 (125)<0.1 (2)<0.1 (11)<0.1 (44)<0.0 (1)0<0.1 (29)0<0.1 (11)Women age groups, y <40 14.8(1 510 119)51.7(5 325 910)7 7. 9(365 443)14.4(1 437 517)45.9(4 131 123)76.4(328 311)9.2(3020)10.9(1 032 366)14.2(252 054)4 7. 6(1 477 776)≥40 85.2(8 704 960)48.3(4 969 651)22.1(103 671)85.5(8 508 009)54.1(4 869 604)23.6(101 394)90.8(29 772)89.1(8 456 981)85.8(1 526 263)52.4(1 625 385) Not recorded<0.1 (16)<0.1 (59)0<0.1 (7)<0.1 (21)0000<0.1 (7)Men age groups, y<40 11.2(998 025)56.2(4 762 038)78.2(397 521)10.9(949 865)49.4(3 533 806)76.7(35 074)8.8(1650)7. 5(541 432)10.5(171 132)46.2(1 110 723)≥40 88.8(7 935 546)43.8(3 712 994)21.8(110 895)89.1(7 747 692)50.8(3 614 721)23.3(106 834)91.2(17 024)92.5(6 703 416)89.5(1 452 098)53.8(1 294 609) Not recorded<0.1 (21)<0.1 (42)<0.1 (2)<0.1 (3)<0.1 (12)<0.1 (1)000<0.1 (4)EthnicityWhite6 7. 9(14 012 353)63.6(13 344 722)53.0(642 168)68.0(13 656 716)64.2(11 530 182)54.0(587 123)74.3(39 827)73.6(12 891 303)69.6(2 553 453)66.9(3 971 366)Indian2.0(406 066)2.2(469 302)1.1(13 385)2.0(395 171)2.2(394 274)1.1(11 902)2.1(1141)2.0(354 433)1.4(51 193)2.6(153 403)Pakistani1.2(253 523)1.6(335 100)1.0(12 213)1.2(239 511)1.4(249 446)0.9(9732)0.9(477)0.6(109 038)0.5(19 186)2.0(118 522)Bangladeshi0.5 (96 392)0.5 (111 314)0.5 (5966)0.5 (92 835)0.5 (83 524)0.5 (4902)0.4 (217)0.2 (43 360)0.3 (10 775)0.7 (40 093)Other Asian0.9 (177 629)1.1 (238 245)1.0 (11 859)0.9 (171 863)1.1 (191 996)1.0 (10 365)0.8 (436)0.7 (128 434)0.6 (23 284)1.1 (67 392)Caribbean0.6 (117 507)0.5 (96 994)0.4 (4265)0.6 (110 470)0.4 (80 146)0.3 (3296)1.3 (706)0.4 (77 095)0.3 (11 820)0.5 (28 327)(Continued)ORIGINAL RESEARCHARTICLECirculation. 2022;146:00–00. DOI: 10.1161/CIRCULATIONAHA.122.059970xxx xxx, 20225Patone et alMyocarditis After COVID-19 Vaccine and Infectionof myocarditis after a first, second, and third dose of BNT162b2 vaccine, respectively. Of these, 22 (17.7%), 14 (11.8%), and 13 (15.3%) patients died with myo-carditis or within 28 days from hospital admission. Last, there were 11, 40, and 8 patients who were admitted to the hospital for myocarditis after, respectively, a first, second, and third dose of mRNA-1273 vaccine. None of these patients died with myocarditis or within 28 days from hospital admission with myocarditis (Table2).In the overall population, we confirmed our previous findings that the risk of hospitalization or death from myocarditis was higher after SARS-CoV-2 infection than vaccination and was greater after the first 2 doses of mRNA vaccine than after adenovirus vaccine (Table3; Table S3; Figure). There was an increased risk of myo-carditis at 1 to 28 days after the first dose of ChAdOx1 (IRR, 1.33 [95% CI, 1.09–1.62]) and BNT162b2 (IRR, 1.52 [95% CI, 1.24–1.85]).There was an increased risk of myocarditis at 1 to 28 days after a second dose of BNT162b2 (IRR, 1.57 [95% CI, 1.28–1.92]) and mRNA-1273 (IRR, 11.76 [95% CI, 7.25–19.08]); and after a booster dose of BNT162b2 (IRR, 1.72 [95% CI, 1.33–2.22]) and mRNA-1273 (IRR, 2.64 [95% CI, 1.25–5.58]).Vaccine-Associated Myocarditis in MenOf the 17918020 men vaccinated in England in the study period, 6158584 (34.4%) were younger than 40 years, and 11759 436 (65.6%) were 40 years or older (Table1). Analysis restricted to younger men age younger than 40 years showed an increased risk of myocarditis Black African0.9 (185 852)1.0 (218 158)1.0 (12 121)0.9 (176 094)0.9 (164 260)0.9 (9258)1.1 (588)0.6 (98 216)0.5 (16 997)1.0 (57 157)Chinese0.3 (63 180)0.3 (70 206)0.4 (5176)0.3 (61 902)0.3 (58 438)0.5 (4902)0.3 (149)0.3 (47 390)0.3 (11 899)0.2 (11 732)Other1.8 (378 719)2.4 (502 815)2.6 (31 811)1.8 (363 257)2.2 (388 674)2.5 (27 107)1.7 (902)1.4 (245 301)1.4 (50 501)2.3 (138 024)Not recorded24.0(4 959 464)26.7(5 592 847)39.0(472 992)24.0(4 813 156)26.8(4 809 146)38.5(418 633)1 7. 1(9163)20.1(3 523 123)25.1(922 223)22.7(1 348 137)History of myocarditis Previous myo-carditis<0.1 (1837)<0.1 (1632)<0.1 (69)<0.1 (1778)<0.1 (1511)<0.1 (56)<0.1 (18)<0.1 (1885)<0.1 (272)<0.1 (687)COVID-19 status†No COVID-1986.3(17 815 732)86.0(18 052 842)85.8(1 039 833)86.3(17 334 448)8 7. 3(15 674 125)86.2(937 147)88.4(47 367)90.5(15 846 583)88.0(3 230 055)…COVID-19 previous vac-cination5.9(1 227 131)7. 8(1 629 334)8.4(101 484)5.9(1 183 882)6.5(1 170 434)7. 8(85 166)6.3(3398)4.7 (815 805)5.3(194 056)49.8(2 958 026)COVID-19 after first dose0.7(143 526)2.8(594 914)3.2(38 200)0.5(99 981)2.2(401 516)3.0(32 222)0.9(456)0.6 (108 097)0.4(15 316)13.1(776 725)COVID-19 after second dose6.7(1 383 490)3.0(638 578)2.7(32 215)6.9(1 381 868)3.6(639 976)3.0(32 452)1.8(969)3.5 (621 836)5.8(213 627)34.6(2 054 331)COVID-19 after booster dose0.4(80 807)0.3(64 035)<0.1(224)0.4(80 796)0.4(64 035)<0.1(233)2.6(1416)0.7(125 372)0.5(18 277)2.4(145 071)No. of dosesOne dose only2.3(467 328)14.8(3 114 034)11.9(144 026)………………12.8(761 515)Two doses only36.0(7 430 747)45.1(9 464 269)80.8(979 495)36.5(7 328 422)53.2(9 550 989)91.7(996 599)………51.5(3 054 000)Two doses + booster61.8(12 752 610)40.0(8 401 400)7. 3(88 435)63.5(12 752 553)46.8(8 399 097)8.3 (90 621)100.0(53 606)100.0(17 517 692)100.0(3 671 331)35.7(2 118 638)Type of vaccinesTwo doses of ChAdOx19 7. 0(20 040 458)……99.8(20 040 458)……83.0(44 472)55.8(9 780 549)79.1(2 903 545)46.2(2 741 419)Two doses of BNT162b2…84.9(17 815 058)……99.2(17 815 058)…5.1(2760)43.7(7 653 274)19.6(720 535)38.0(2 256 069)Two doses of mRNA-1273……8 7. 5(1 060 277)……9 7. 5(1 060 277)<0.1(8)0.3(45 269)1.2(42 783)2.5(146 385)*Among vaccinated individuals. †Determined by a SARS-CoV-2 test. Table 1.ContinuedChAdOx1BNT162b2mRNA-1273ChAdOx1BNT162b2mRNA-1273ChAdOx1BNT162b2mRNA-1273SARS- CoV-2 positive*One dose (n=42 842 345)Two doses (n=39 118 282)Booster doses (n=21 242 629)(n= 5 934 153)% (n)% (n) % (n)% (n)% (n)% (n)% (n)% (n)% (n)% (n)

After COVID-19 Vaccine and Infectionafter a first dose of BNT162b2 (IRR, 1.85 [95% CI, 1.30–2.62]) and mRNA-1273 (IRR, 3.06 [95% CI, 1.33–7.03]); and a second dose of ChAdOx1 (IRR, 2.73 [95% CI, 1.62–4.60]), BNT162b2 (IRR, 3.08 [95% CI, 2.24–4.24]), and mRNA-1273 (IRR, 16.83 [95% CI, 9.11–31.11]). The risk of myocarditis for older men 40 years or more was associated with a booster dose of both mRNA vaccines, BNT162b2 (IRR, 2.15 [95% CI, 1.46–3.17]) and mRNA-1273 (IRR, 3.76 [95% CI, 1.41–10.02]) (Table 3).Vaccine-Associated Myocarditis in WomenOf the 20 979 754 women vaccinated in England in the study period, 7 201 472 (34.3%) were younger than 40 Table 2. Demographic and Clinical Characteristics of Patients Who Were Admitted to the Hospital for Myocarditis in the 1 to 28 Days After a COVID-19 Vaccine First Dose, Second Dose, and Booster Dose or SARS-CoV-2 Infection Among the Vaccinated Population in England from December 1, 2020, Until December 15, 2021VariableBaselineRisk set (1–28 days after exposure)ChAdOx1BNT162b2mRNA-1273 First dose Second dose Booster dose First dose Second dose Booster dose First dose Second dose Booster dose Total no. of people22441409001241198511408Sex Women40.4 (907)40.7 (57)26.7 (24)…41.1 (51)28.6 (34)45.9 (39)*** Men59.4 (1333)59.3 (83)73.3 (66)…58.1 (72)70.6 (84)54.1 (46)>5>5>5 Not recorded0.2 (4)00…0.8 (1)0.8 (1)0000Age Mean age (SD)53.8 (19.7)57.5 (17.5)54.2 (18.0)…48.7 (24.3)45.0 (24.8)67.2 (15.8)27.0 (9.5)24.9 (6.3)61.8 (14.8) <40 y26.3 (590)14.3 (20)25.6 (23)…46.8 (58)58.8 (70)7.1 (6)>5>5≥40 y73.7 (1654)85.7 (120)74.4 (67)…53.2 (66)41.2 (49)92.9 (79)>5Deaths with myocarditis or within 28 days of hospital admission with myocarditis No. of deaths10.9 (245)28.6 (40)12.2 (11)…17.7 (22)11.8 (14)15.3 (13)……… Mean age of death (SD), y68.7 (14.3)62.1 (17.4)65.2 (10.4)…67.8 (20.4)69.2 (21.6)78 (8.7)……… No. of deaths Women38.2 (92)35.0 (14)…57.1 (12)46.1 (6)……… Men61.8 (149)65.0 (26)>5…42.9 (9)53.9 (7)> 5……… Not recorded0.2 (4)000.8 (1)0.8 (1)0COVID-19 status (positive SARS-CoV-2 test) No COVID-19…72.9 (102)82.2 (74)…71.8 (89)88.2 (105)81.2 (69)54.5 (6)90.0 (36)100.0 (8) COVID-19 previous vac-cination…12.9 (18)11.1 (10)…10.5 (13)8.2 (7)… COVID-19 after first dose…11.4 (16)…15.3 (19)… COVID-19 after second dose…5.6 (5)…5.0 (6)… COVID-19 after booster dose…7.1 (6)…No. of doses One …45.7 (64)…53.2 (66)90.9 (10)* Two …23.6 (33)60.0 (54)…16.9 (21)70.6 (84)97.5 (39)* Two + booster…30.7 (43)40.0 (36)…29.8 (37)29.4 (35)100.0 (85)100.0 (8)Type of first 2 doses received ChAdOx1…50.7 (71)98.9 (89)………49.4 (42)……62.5 (5) BNT162b2…………43.5 (54)99.2 (118)50.6 (43)……* mRNA-1273………………100.0 (40)Lag between first and second doses (days)≤655.7 (8)16.7 (15)…8.1 (10)47.9 (57)24.7 (21)55.0 (22)* 6 6–7931.4 (44)55.6 (50)…25.8 (32)32.8 (39)54.1 (46)…22.5 (9)*≥8017.1 (24)27.8 (25)…12.9 (16)19.3 (23)21.2 (18)…22.5 (9)Cells with counts <5 are suppressed. ORIGINAL RESEARCH

After COVID-19 Vaccine and Infection Table 3. Incidence Rate Ratios (IRR [95% CI]) for Main Analysis and by Age Group (Age 40 Years or Older, Younger Than 40 Years) and Sex (Female and Male) for Myocarditis in Predefined Risk Periods Immediately Before and After Exposure to Vacci-nation and Before and After a Positive SARS-CoV-2 Test Result, Adjusted for Calendar Time From December 1, 2020, to December 15, 2021 (if 1 or no events, IRR has not been estimated and reported as n/a).Time periodChAdOx1 nCoV-19 vaccineBNT162b2 mRNA vaccinemRNA-1273 vaccine Positive SARS-CoV-2 test (before vaccine)Positive SARS-CoV-2 test (vaccinated) Events I RR (95% CI) Events I RR (95% CI)Events IRR (95% CI)Events IRR (95% CI)Events IRR (95% CI)Main analysis 1–28 days: first dose/positive test before any vaccination1401.33 (1.09–1.62)1241.52 (1.24–1.85)111.85 (0.93–3.66)11411.14 (8.64–14.36)815.97 (4.54–7.87) 1–28 days: second dose900.93 (0.74–1.17)1191.57 (1.28–1.92)4011.76 (7.25–19.08) 1–28 days: booster dose*n/a851.72 (1.33–2.22)82.64 (1.25–5.58)Women 1–28 days: first dose/positive test before any vaccination571.32 (0.97–1.81)511.59 (1.16–2.20)*1.07 (0.23–4.90)4714.23 (9.34–21.68)326.87 (4.38–10.78) 1–28 days: second dose240.54 (0.35–0.83)341.04 (0.72–1.50)*3.95 (1.20–13.04) 1–28 days: booster dose*n/a391.55 (1.06–2.27)*1.51 (0.35–6.47)Men 1–28 days: first dose/positive test before any vaccination831.33 (1.03–1.72)721.47 (1.14–1.90)92.35 (1.09–5.08)679.71 (7.03–13.40)495.55 (3.91–7.88) 1–28 days: second dose661.26 (0.96–1.65)841.93 (1.51–2.45)3614.98 (8.61–26.07) 1–28 days: booster dose*n/a461.89 (1.34–2.67)63.57 (1.48–8.64)Age <40 y 1–28 days: first dose/positive test before any vaccination201.31 (0.79–2.16)581.79 (1.33–2.41)102.76 (1.32–5.75)205.25 (3.11–8.86)81.18 (0.56–2.48) 1–28 days: second dose231.69 (1.06–2.71)702.59 (1.96–3.44)3913.97 (8.07–24.19) 1–28 days: booster dose*n/a61.53 (0.64–3.64)*n/aAge ≥40 y 1–28 days: first dose/positive test before any vaccination1201.21 (0.97–1.51)661.28 (0.97–1.71)*n/a9414.87 (10.98–20.14)7310.52 (7.61–14.54) 1–28 days: second dose670.72 (0.55–0.93)490.85 (0.62–1.16)*n/a 1–28 days: booster dose*n/a791.96 (1.48–2.59)72.97 (1.32–6.69)Women age <40 y 1–28 days: first dose/positive test before any vaccination71.20 (0.51–2.84)141.65 (0.91–2.97)*2.68 (0.54–13.25)79.80 (3.70–25.97)63.98 (1.52–10.42) 1–28 days: second dose/posi-tive test after any vaccination*0.32 (0.08–1.37)91.16 (0.57–2.34)*4.75 (1.11–20.40) 1–28 days: booster dose*n/a*0.83 (0.19–3.64)*n/aMen age <40 y 1–28 days: first dose/positive test before any vaccination131.34 (0.72–2.48)431.85 (1.30–2.62)83.06 (1.33–7.03)134.35 (2.31–8.21)*0.39 (0.09–1.60) 1–28 days: second dose212.73 (1.62–4.60)603.08 (2.24–4.24)3616.83 (9.11–31.11) 1–28 days: booster dose*n/a*2.28 (0.77–6.80)*n/a(Continued )ORIGINAL

After COVID-19 Vaccine and Infection years, and 13 778 282 (65.7%) were 40 years or older (Table 1). Analysis restricted to women younger than 40 years showed an increased risk of myocarditis after a second dose of mRNA-1273 (IRR, 4.75 [95% CI, 1.11–20.40]). For women 40 years or older, there was an in-creased risk of myocarditis associated with a first (IRR, 1.57 [95% CI, 1.05–2.33]) and third (IRR, 1.76 [95% CI, 1.17–2.65]) dose of BNT162b2 vaccine. It is important that for all subgroups, the higher risk of myocarditis was found in the 1 to 7 days or 8 to 14 days after vaccination (Table S4).Vaccine-Associated Myocarditis by Vaccination History Analyses restricted to people who had the same type of vaccine for the first and second doses (Table S5) showed that for patients having a first and second dose of ChAdOx1, there was an increased risk of myocarditis associated with a booster dose of BNT162b2 (IRR, 1.78 [95% CI, 1.22–2.60]) and mRNA-1273 (IRR, 2.97 [95% CI, 1.13–7.82]). For patients who had a first and second dose of BNT162b2 vaccine, there was an increased risk of myocarditis after the second dose of BNT162b2 (IRR, 1.53 [95% CI, 1.24–1.88]). Last, for patients who had a first and second dose of mRNA-1273 vaccine, there was an increased risk of myocarditis after a second dose of mRNA-1273 (IRR, 8.63 [95% CI, 3.98–18.75]).The risk after a second dose of BNT162b2 was higher for people who received the first 2 doses within 65 days of each other (IRR, 2.16 [95% CI, 1.60–2.91]) compared with people who received the first 2 doses with a longer lag: between 66 and 79 days (IRR, 1.01 [95% CI, 0.71–1.44]) and 80 days or more (IRR, 1.40 [95% CI, 0.88–2.21]). The risk after a second dose of mRNA-1273 was higher when the lag was of 80 or more days (IRR, 22.80 [95% CI, 7.48–69.48]) compared with when the lag was 65 days or less (IRR, 7.41 [95% CI, 3.98–13.77) (Table S6).SARS-CoV-2 Infection–Associated Myocarditis There was an increased risk of myocarditis in the 1 to 28 days after a SARS-CoV-2–positive test, which was higher if infection occurred before vaccination (IRR, 11.14 [95% CI, 8.64–14.36]) than in vaccinated individuals (IRR, 5.97 [95% CI, 4.54–7.87]). The risk of myocarditis associated with a SARS-CoV-2–positive test before vaccination was higher in people 40 years or older (IRR, 14.87 [95% CI, 10.98–20.14]) than in-dividuals younger than 40 years (IRR, 5.25 [95% CI, 3.11–8.86]), but no significant difference was observed between risks in women (IRR, 14.23 [95% CI, 9.34–21.68]) and men (IRR, 9.71 [95% CI, 7.03–13.40), al-though the point estimate for women was higher than the equivalent for men. A similar pattern of risk of myo-carditis was associated with a SARS-CoV-2–positive test occurring in vaccinated individuals; however, in this case, the increased risk was substantially lower and in particular was not observed for individuals younger than 40 years (IRR, 1.18 [95% CI, 0.56–2.48]) (Table 3).Absolute and Excess Risks After the first dose of the ChAdOx1 and BNT162b2 vaccines, an additional 2 (95% CI, 1–3) and 2 (95% CI, 1–3) myocarditis events per million people vaccinated would be anticipated, respectively. After the second dose of BNT162b2 and mRNA-1273, an additional 2 (95% CI, 2–3) and 34 (95% CI, 32–35) myocar-ditis events per million people would be anticipated, Women age ≥40 y 1–28 days: first dose/positive test before any vaccination501.30 (0.92–1.84)371.57 (1.05–2.33)*n/a4017.29 (10.70–27.96)268.65 (5.13–14.59) 1–28 days: second dose220.55 (0.35–0.86)250.98 (0.63–1.52)*n/a 1–28 days: booster dose*n/a371.76 (1.17–2.65)*2.00 (0.46–8.72)Men age ≥40 y 1–28 days: 1st dose/positive test before any vaccination701.16 (0.87–1.54)291.05 (0.69–1.59)*n/a5413.40 (9.04–19.88)4711.77 (7.77–17.85) 1–28 days: second dose450.85 (0.61–1.19)240.77 (0.49–1.18)*n/a 1–28 days: booster dose*n/a422.15 (1.46–3.17)53.76 (1.41–10.02)Day 0 of each exposure has been removed because of small numbers.*Cells with counts <5 are suppressed. Table 3. Continued Time periodChAdOx1 nCoV-19 vaccineBNT162b2 mRNA vaccinemRNA-1273 vaccine Positive SARS-CoV-2 test (before vaccine)Positive SARS-CoV-2 test (vaccinated) Events IRR (95% CI)Events IRR (95% CI)Events IRR (95% CI)Events IRR (95% CI) EventsIRR (95%

After COVID-19 Vaccine and Infectionres pectively. After a booster dose of BNT162b2 and mRNA-1273, an additional 2 (95% CI, 1–3) and 1 (95% CI, 0–2) myocarditis events per million people would be anticipated, respectively. These estimates compare with an additional 35 (95% CI, 34–36) and 23 (95% CI, 21–24) myocarditis events per million people in the 1 to 28 days after a SARS-CoV-2–posi-tive test before vaccination and in vaccinated individu-als, respectively (Table 4; Figure).In men younger than 40 years, we estimate an additional 4 (95% CI, 2–6) and 14 (95% CI, 5–17) myocarditis events per million in the 1 to 28 days after a first dose of BNT162b2 and mRNA-1273, respectively; and an additional 14 (95% CI, 8–17), 11 (95% CI, 9–13) and 97 (95% CI, 91–99) myocarditis events after a second dose of ChAdOx1, BNT162b2, and mRNA-1273, respectively. These estimates compare with an additional 16 (95% CI, 12–18) myocarditis events per million men younger than 40 years in the 1 to 28 days after a SARS-CoV-2–positive test before vaccination (Table 4; Figure).Robustness of the ResultsOverall, our main findings were not sensitive to censoring because of death (Table S7, sensitivity analyses 1 through 3), and IRRs for the second dose of vaccination agreed with main results when we removed those who had the outcome after the first dose of any vaccine, but before the second dose (Table S7, sensitivity analysis 5). Similarly, IRRs for the booster dose of vaccination agreed with main results when we removed those who had the outcome af-ter the second dose of any vaccine, but before the booster dose (Table S7, sensitivity analysis 6). There was no bias caused by possibly not complete data near the end of the study period (Table S7, sensitivity analysis 4). Estimates for vaccines exposures agreed with the main analysis when restricted to patients who never tested positive to SARS-CoV-2 (Table S8, sensitivity analysis 7).

DISCUSSIONIn

a population of >42 million vaccinated individuals, we re-port several new findings that could influence public health Figure. Risk of myocarditis in the 1 to 28 days after COVID-19 vaccines or SARS-CoV-2.(Left) Incidence rate ratios with 95% CIs and (right) number of excess myocarditis events for million people with 95% CIs in the 1 to 28 day risk periods after the first, second, and booster doses of ChAdOx1, BNT162b2,and mRNA-1273 vaccine or a positive SARS-CoV-2 test in (top) a population of 42 842 345 vaccinated individuals and (bottom) younger men (age <40 years), older men (age ≥40 years), younger women (age <40 years), and older women (aged ≥40 years).ORIGINAL

First, the risk of myocar-ditis is substantially higher after SARS-CoV-2 infection in unvaccinated individuals than the increase in risk observed after a first dose of ChAdOx1nCoV-19 vaccine, and a first, second, or booster dose of BNT162b2 vaccine. Second, although the risk of myocarditis with SARS-CoV-2 infec-tion remains after vaccination, it was substantially reduced, suggesting vaccination provides some protection from the cardiovascular consequences of SARS-CoV-2. Third, in contrast with other vaccines, the risk of myocarditis ob-served 1 to 28 days after a second dose of mRNA-1273 vaccine was higher and similar to the risk after infection. Last, vaccine-associated myocarditis was largely restrict-ed to men younger than 40 years with 1 exception; both younger men and women were at increased risk of myo-carditis after a second dose of mRNA-1273.Vaccination against COVID-19 has both major public health and economic benefits. Although the net benefit of vaccination for the individual or on a population level should not be framed exclusively around the risks of myocarditis, quantifying this risk is important, particularly in young people who are less likely to have a severe ill-ness with SARS-CoV-2 infection. Multiple studies have identified an increase in myocarditis after exposure to the BNT162b2 mRNA vaccine.1–8,13 Some of our find-ings are confirmatory, but we also demonstrate that the risk of myocarditis is not restricted to this vaccine but is observed after vaccination with adenovirus and other mRNA vaccines and after a booster dose.It is important to place our findings into context. One of the strengths of our analysis is that we quantify the risk of myocarditis associated with both vaccination and SARS-CoV-2 infection in the same population. Myocarditis is an uncommon condition. The risk of vaccine-associated myocarditis is small, with up to an additional 2 events per million people in the 28-day period after exposure to all vaccine doses other than mRNA-1273. This is substan-tially lower than the 35 additional myocarditis events observed with SARS-CoV-2 infection before vaccination. Furthermore, vaccination reduced the risk of infection associated myocarditis by approximately half, suggest-ing that the prevention of infection associated myocarditis may be an additional longer-term benefit of vaccination.The risk of vaccine-associated myocarditis is con-sistently higher in younger men, particularly after a second dose of mRNA-1273, where the number of additional events during 28 days was estimated to be 97 per million people exposed. An important consid-eration for this group is that the risk of myocarditis after a second dose of mRNA-1273 was higher than the risk after infection. Indeed, in younger women, although the relative risks of myocarditis were lower than in younger men, the number of additional events per million after a second dose of mRNA-1273 was similar to the number after infection. These findings may justify some reconsideration of the selection of vaccine type, the timing of vaccine doses, and the net benefit of booster doses in young people, particularly in young men. However, there are some important caveats that need to be considered. First, the num-ber of people vaccinated with mRNA-1273 was small compared with those receiving other types of vaccine, Table 4. Measures of the Effect of Vaccinations and SARS-CoV-2 Infections Presented as Excess Events Per 1 Million Exposed Excess myocarditis events per 1 000 000 exposed (95% CI)Main analysis Age <40 yAge ≥40 y Women Men Age <40 yAge ≥40 y Women Men Women Men ChAdOx1 First dose2 (1–3)………2 (0–4)………… Second dose…4 (0–6)…………14 (8–17)…… Booster dose………………………BNT162b2 First dose2 (1–3)2 (1–3)…2 (1–3)3 (1–4)…4 (2–6)3 (0–4)… Second dose2 (1–3)5 (4–5)……6 (4–7)…11 (9–13)…… Booster dose2 (1–3)…2 (2–3)1 (0–2)3 (2–4)……2 (1–3)3 (2–4)mRNA-1273 First dose…7 (3–9)……10 (1–14)…14 (5–17)…… Second dose34 (32–35)43 (41–44)…7 (2–9)73 (70–76)7 (1–9)97 (91–99)…… Booster dose1 (0–2)…1 (1–2)…3 (1–3)………3 (1–3)SARS-CoV-2 Positive test (before vaccine)35 (34–36)10 (9–11)63 (62–64)28 (27–29)50 (48–51)8 (6–8)16 (12–18)51 (49–52)85 (82–87) Positive test (vaccinated)23 (21–24)…39 (38–40)17 (16–19)34 (30–36)7 (3–8)…26 (24–27)61 (58–63)Only significant increased risks were reported during the 1 to 28 days after exposure. When incidence rate ratios were not significant during the 1 to 28 days after vaccine, absolute measures are not given.

Second, the average age of those receiving this vaccine was younger at 32 years compared with other vaccines where recipients were in their mid-40s and 50s. The observed excess risk related to mRNA-1273 may in part be a result of the higher probability of myocarditis in this younger age group. Our findings are consistent with 2 recent studies from the United States and Denmark in which the risks of myocarditis after mRNA-1273 and BNT162b2 were compared.7,14 In the Vaccine Adverse Event Reporting System, 1991 cases of myocarditis were reported to August 31, 2021, with a median age of 21 years and 82% male.14 Although our findings are not directly com-parable because the Vaccine Adverse Event Reporting System dataset relies on clinician reporting, the risks of myocarditis were higher after a second dose of both BNT162b2 and mRNA-1273 and were greater for mRNA-1273 in most younger age groups. In Denmark, a population-based study that applied both case-control and self-controlled case series study methods observed a greater increase in the risk of myocarditis or myopericarditis 1 to 28 days after mRNA-1273 (adjusted hazard ratio, 3.92 [95% CI, 2.30–6.68]) than after BNT162b2 (adjusted hazard ratio, 1.34 [95% CI, 0.90–2.00]).7 They also observed the risk was largely confined to those younger than 40 years and was present for both younger men and women for mRNA-1273. The reasons for male predominance in myocarditis is not known but may relate to sex hormone differences in both the immune response and myocarditis, or to the underdiagnosis of cardiac dis-ease in women.15,16This study has several strengths. First, the United Kingdom offered an ideal place to carry out this study given that 3 types of COVID-19 vaccination have been rolled out at the same speed and scale as each other. Second, this was a population-based study of data recorded prospectively and avoided recall and selection biases linked to case reports. Third, the large sample size provided sufficient power to investigate these rare outcomes, which could not be assessed through clini-cal trials. Fourth, the self-controlled case series study design removes potential confounding from fixed char-acteristics, and the breakdown of our study period into weekly blocks accounted for temporal confounding. Of note, the estimated IRRs were consistently <1 in the pre-exposure period before vaccination and >1 in the pre-risk period before a SARS-CoV-2–positive test. This was expected because events are unlikely to happen shortly before vaccination (relatively healthy people are receiving the vaccine) and more likely to happen before a SARS-CoV-2–positive test (as a standard procedure, patients admitted to the hospital are tested for SARS-CoV-2). We also assessed the robustness of our results through several sensitivity analyses.There are some limitations to consider. First, the number of people receiving a booster dose of ChAdOx1 or mRNA-1273 vaccine was too small to evaluate the risk of myocar-ditis. Second, we relied on hospital admission codes and death certification to define myocarditis, and it is possible that we might have over- or underestimated risk because of misclassification. Third, although we were able to include 2 230 058 children age 13 to 17 years in this analysis, the number of myocarditis events was small (56 events in all periods and 16 events in the 1 to 28 days after vac-cination) in this subpopulation and precluded a separate evaluation of risk. It should also be noted that only the first occurrence of myocarditis in the study period is used in this analysis. Therefore, the results found for the risk of myo-carditis after a third dose do not include repeated instances of myocarditis in the same individual. A comparison of rates of death with myocarditis between those infected with SARS-CoV-2 or vaccinated was not possible, given that for this analysis, we have included only people who had been vaccinated. Therefore, a patient with COVID-19 who died after myocarditis before receiving a vaccination will not be included, and rates of myocarditis death after SARS-CoV-2 will be under estimated.In summary, the risk of hospital admission or death from myocarditis is greater after SARS- CoV2 infection than COVID-19 vaccination and remains modest after sequential doses including a booster dose of BNT162b2 mRNA vaccine. However, the risk of myocarditis after vaccination is higher in younger men, particularly after a second dose of the mRNA-1273 vaccine.

ARTICLE INFORMATIONReceived March 10, 2022; accepted June 7, 2022.AffiliationsNuffield Department of Primary Health Care Sciences (M.P., X.W.M., S.D., A.H., C.A.C.C., J.H.-C.), Wellcome Centre for Human Genetics (L.H.), British Heart Foundation Centre of Research Excellence, National Institute for Health Research, Oxford Biomedical Research Centre, Radcliffe Department of Medicine, John Rad-cliffe Hospital (K.M.C.): National Institute for Health Research Biomedical Research Centre, Oxford University Hospitals National Health Service Trust (P.W.); University of Oxford. School of Immunology and Microbial Sciences, King’s College London, Centre for Inflammation Research (M.S.-H.). Leicester Real World Evidence Unit, Diabetes Research Centre (F.Z., K.K.), University of Leicester. Usher Institute (M.S.-H., N.L.M., A.S.), British Heart Foundation University Centre for Cardiovascular Sci-ence (N.L.M.), University of Edinburgh. Centre for Academic Primary Care, School of Medicine, University of Nottingham (C.A.C.C.)

UK Govt Denies ‘Safe Use’ Recommendation for Pfizer Vaccine In Pregnant Women, Says Those Breastfeeding Should NOT Be Vaccinated.

FURTHER STUDIES ARE BEING CONDUCTED TO ASCERTAIN MORE DETAILS ABOUT THE IMPACT OF THE VACCINES.

Authors:  NATALIE WINTERS AUGUST 30, 2022 The National Pulse

The British government has recommended against pregnant and breastfeeding women receiving the Pfizer COVID-19 vaccine, admitting that “sufficient reassurance of safe use of the vaccine” for the demographic “cannot be provided at the present time.”

The findings were revealed in a comprehensive report from the country’s Department of Health and Social Care, “Summary of the Public Assessment Report for COVID-19 Vaccine Pfizer/BioNTech,” last updated on August 16th. The report was published through the government’s Medicines & Healthcare products Regulatory Agency.

The report’s “Toxicity Conclusions” section outlines why the department recommends against pregnant and breastfeeding women receiving the vaccine, noting:

“In the context of supply under Regulation 174, it is considered that sufficient reassurance of safe use of the vaccine in pregnant women cannot be provided at the present time: however, use in women of childbearing potential could be supported provided healthcare professionals are advised to rule out known or suspected pregnancy prior to vaccination. Women who are breastfeeding should also not be vaccinated.

“The absence of reproductive toxicity data is a reflection of the speed of development to first identify and select COVID-19 mRNA Vaccine BNT162b2 for clinical testing and its rapid development to meet the ongoing urgent health need. In principle, a decision on Licensing a vaccine could be taken in these circumstances without data from reproductive toxicity studies animals, but there are studies ongoing and these will be provided when available,” continued the report.

The admission follows controversy over several Western governments’ hasty approvals and, in some cases, mandates of COVID-19 vaccines.

In the U.S., following a massive lobbying campaign by pharmaceutical giants including Pfizer, many jobs, businesses, and schools required COVID-19 vaccination for entry. As a result, companies including Pfizer have enjoyed record-breaking profits throughout the COVID-19 pandemic.

The British government’s report also follows U.S. health agencies such as the Food and Drug Administration (FDA) appearing to slow roll the release of data relevant to the efficacy and long-term health implications of the COVID-19 vaccine.

Here is Who is to Blame for the Covid Vaccine Disaster and Coverup.

Authors: Wayne Allyn Root August 28, 2022 Controversial Opinion Gateway Pundit With minor edits.

The Number of Deaths from Sudden Adult Death Syndrome Following COVID Jabs is Growing and Recent Autopsy Results Reveal The Short & Long-term Danger of These Poorly Tested Products. Articles Such As This Are Beginning to Appear in Great Numbers. Time Will Tell!

Every day it becomes more clear what a disaster the Covid vaccine is. Data from all over the world is showing proof that those who are vaccinated are much sicker, more often hospitalized, and dying in far higher numbers than the unvaccinated.

In both Europe and the USA, the mortality data clearly shows a massive, never-before-seen-in-world-history, increase in non-Covid deaths since literally the day the vaccine mandates started.

In the beginning, I was one of the only radio and TV hosts pointing out what a disaster this was and how terrible the early results were. But I sure was feeling mighty lonely. Most conservative TV and radio hosts went along with the fraud. Of course, it turns out their networks were paid millions of dollars to coverup the deadly results from the Covid vaccine.

Now suddenly everyone is waking up from an almost two-year slumber. The lightbulbs are going off. Conservative talk star Dan Bongino just days ago called getting the vaccine “the biggest regret of my life.” He now realizes he has a ticking timebomb in his body that could cripple or kill him sometime soon. He regrets getting it. He regrets ever encouraging his fans and listeners to get it.

Tucker Carlson has gone from warning the Covid vaccine doesn’t work and it’s a huge failure, to reporting dramatically rising death rates in countries all over the world. He even reported data that shows you’re much more likely to die if you’re vaccinated versus unvaccinated.

Welcome to my world Tucker. I’ve been reporting this data every day on my national radio show for the past 18 months.

When everyone around you is vaccinated and dying, I guess there comes a point where it’s hard to avoid admitting there’s a disaster going on. So now even Democrats are starting to talk about vaccine deaths and injuries. But guess who they’re blaming?

Democrats live by the saying, “Never let a crisis go to waste.” So now they’re starting to blame President Trump. Right now, it’s a trickle. Soon it will be a tsunami. This will be the new Democrat talking point moving forward.

Everyone sees it. It’s impossible to ignore. So many Americans are dying “suddenly.” That includes celebrities, athletes, rock stars and even doctors. Many Democrat politicians are walking zombies after vaccination- look no further than the zombie twins President Joe Biden and Pennsylvania US Senate candidate John Fetterman. They can’t even put two sentences together anymore. If those two prominent Democrats got on a stage together it would be like a combination of “Weekend at Bernie’s” and “Night of the Living Dead.”

So now that everyone sees what’s happening- from heart attacks, strokes, blood clots, and cancer to mass death- they’re going to blame it all on Trump. I’m here to tell you Trump is not to blame.

Here is who is to blame…

Dr. Fauci gets 100% of the blame. He knew. He conned the nation, long after he knew the vaccine didn’t work…long after he saw the CDC-compiled VAERS list of deaths and injuries from the vaccine piling up…long after he saw the vaccine trial evidence that volunteers in the trial died…volunteers were injured…volunteers were crippled…volunteers were disabled…and pregnant mothers lost their babies at an alarming rate. Yet Fauci covered it all up. Worse, he encouraged more Americans to get the vaccine, knowing the terrible side effects of this tragic experiment gone bad.

The CDC and WHO get 100% of the blame. They knew everything Dr. Fauci knew. Yet they pushed the vaccines. And then later, after everyone with a brain saw the death toll, they recommended these death shots for children. These organizations are guilty of mass murder on a scale not seen since WWII.

Biden and the Biden administration get 100% of the blame. They certainly knew about the rising death and injury numbers by March of 2021 when Biden gave the orders to OSHA to mandate the jabs at every large corporation in America. They condemned millions of American employees to risk death or terrible injury.

The media is 100% to blame. They are the PR wing of the Democrat Party. They covered up this entire massive tragedy. This is the biggest healthcare debacle in world history. And the media has covered it all up, blacked it out, whitewashed it. Oops.

The whole mainstream media sold out- even Fox News and Newsmax. I’m guessing the biggest conservative talk radio syndicators sold out too. They all took millions to shut up. They agreed no host, or guest could tell the truth about vaccine deaths or injuries. They took blood money. They sold out all of YOU – their own customers.

Doctors across America are 100% to blame. They knew. They saw their patients dying. But they were too greedy, or scared of losing their license to speak out. The doctors played dumb. They were sheep. They accepted the lies of the CDC, WHO, FDA and AMA without asking any questions. They call that “science.”

And of course, Big Pharma and the vaccine manufacturers are 100% to blame. They knew from day one. They saw the vaccine trial results. They buried the tragic and deadly results. They demanded complete 100% immunity from lawsuits. Then they demanded the vaccine trial results be kept secret for 75 years. Now we understand why.

The so-called “medical experts” are responsible for the biggest disaster in history, lying to President Trump, committing fraud against the people, then acting in conspiracy to cover it up. Trump was taken advantage of, just like the American people. They defrauded us all- and these criminals are responsible for mass negligence, leading to mass murder, and then mass fraud to coverup the truth.

It’s not “Trump’s vaccine.” People are dying from the vaccines all over the world. Is it “Trump’s vaccine” in UK, Scotland, Portugal, Netherlands, Israel, or Canada- where some of the worst vaccine death data are being reported.

More importantly, Trump was against vaccine mandates from the first day. That would have protected millions of American workers who were forced by Biden to choose between their
jobs and the vaccine. With Trump as President they never would have been forced to make that choice. How many employees of large corporations would be alive today if Trump was President?

So, desperate Democrats who conned and forced the American people into taking a deadly experimental vaccine can try to blame Trump, but that dog won’t hunt. Democrats praised the vaccine, Democrats mandated millions get the death shot, Democrats slandered anyone who told the truth, Democrats called reports of vaccine deaths and injuries “misinformation.”

This is their debacle. This is their disaster. This is their Waterloo. Blaming Trump is just one more expansion of the world’s most insane political witch-hunt.

Based on what we know now, it’s clearly time to suspend the vaccine program and investigate what went wrong. And if found guilty of fraud and cover-up, demand everyone involved be criminally prosecuted. We must clean house at the CDC, FDA and other government agencies that allowed this disaster to occur. To make sure nothing like this ever happens again, Congress must pass a law that bans mandates for any experimental or emergency-use vaccine or drug. No one should ever force any American to choose between their job or their life. Or going to school or college and their life.”

Omicron’s Mutations Impaired Vaccine Effectiveness, CDC Says

Authors: Madison Muller  August 25, 2022 Bloomberg

Almost 40% of people hospitalized in the US with the Covid subvariant that circulated this spring were vaccinated and boosted, highlighting how new strains have mutated to more readily escape the immunity offered by current shots.

The findings from scientists at the US Centers for Disease Control and Prevention underscore the importance of having Covid shots that are better at targeting omicron subvariants. 

From the end of March through May, when the omicron BA.2 and BA.2.12.1 subvariants were dominant in the US, weekly hospitalization rates increased for all adults — with those over 65 hit the hardest. Even so, the total number of hospitalizations remained much lower than when the delta variant was rampant last fall. 

The overall number of hospitalizations is an important point, said Abraar Karan, an infectious disease doctor at Stanford University.

“When you look at who’s hospitalized, it’s much more likely that they will have been vaccinated because so many people are vaccinated now,” Karan said. “The real comparison is how many hospitalizations do we have now versus in the past when people were not vaccinated or not up-to-date with boosters.”

CDC scientists found that vaccines and boosters did a better job of keeping people with delta infections out of the hospital than those with later variants. Effectiveness decreased slightly with the BA.1 variant, then changed significantly with BA.2 — with a much greater share of hospitalized adults who had been vaccinated with at least one booster. 

Read more: Retiring Fauci expected Covid to be ‘behind us’

Immunity from vaccines starts to wane within six months, so staying up-to-date with shots is key to being fully protected. Fewer than half of Americans have gotten a booster shot.

Adults with at least two booster shots fared better than other people when BA.2 was dominant. The majority of those admitted to the hospital also had at least one underlying condition. Unvaccinated adults were more than three times as likely to be hospitalized, but breakthrough infections still represented a significant number of the severe Covid cases, the data show.

US regulators have pushed Moderna Inc., Pfizer Inc. and BioNTech SE to expedite development of omicron-specific boosters for a September rollout. The drugmakers this week submitted early data to the US Food and Drug Administration seeking emergency clearance for updated shots that target the BA.4 and BA.5 virus strains. Scientists and vaccinemakers are already beginning to look toward next-generation shots that may provide longer-lasting protection against more variants. 

The new report’s findings also indicate that along with vaccination, other pharmaceutical and non-pharmaceutical measures should be used by those at highest risk of getting Covid. That includes easy access to therapeutics such as Pfizer’s antiviral drug Paxlovid and Gilead Sciences’ remdesivir, as well as AstraZeneca’s Evusheld for immunocompromised people. Scientists also note that wearing a mask can help guard the wearer from getting sick.  

Though the number of Covid deaths is the lowest it has been since last July, the US continues to see hundreds of deaths each day from Covid, CDC data show.

Vascular and organ damage induced by mRNA vaccines: irrefutable proof of causality

Authors: Michael Palmer, MD and Sucharit Bhakdi, MD August 19, 2022 Popular Science

This article summarizes evidence from experimental studies and from autopsies of patients deceased after vaccination. The collective findings demonstrate that

  1. mRNA vaccines don’t stay at the injection site by instead travel throughout the body and accumulate in various organs,
  2. mRNA-based COVID vaccines induce long-lasting expression of the SARS-CoV-2 spike protein in many organs,
  3. vaccine-induced expression of the spike protein induces autoimmune-like inflammation,
  4. vaccine-induced inflammation can cause grave organ damage, especially in vessels, sometimes with deadly outcome.

We note that the damage mechanism is which emerges from the autopsy studies is not limited to COVID-19 vaccines only but is completely general—it must be expected to occur similarly with mRNA vaccines against any and all infectious pathogens. This technology has failed and must be abandoned.

While clinical case reports (e.g. [1,2]) and statistical analyses of accumulated adverse event reports (e.g. [3,4]) provide valuable evidence of damage induced by mRNA-based COVID-19 vaccines, it is important to establish a causal relationship in individual cases. Pathology remains the gold standard for proof of disease causation. This short paper will discuss some key findings on autopsy materials from patients who died within days to several months after vaccination. For context, some experimental studies are briefly discussed as well.

1. Most of the evidence presented here is from the work of pathologist Prof. Arne Burkhardt, MD

  • Dr. Burkhardt was approached by the families of patients deceased after “vaccination”
  • Autopsy materials were examined by standard histopathology and immunohistochemistry
  • Based on the findings, most deaths were attributed to “vaccination” with a high to very high degree of likelihood

Prof. Burkhardt is a very experienced pathologist from Reutlingen, Germany. With the help of his colleague Prof. Walter Lang, he has studied numerous cases of death which occurred within days to several months after vaccination. In each of these cases, the cause of death had been certified as “natural” or “unknown.” Burkhardt became involved only because the bereaved families doubted these verdicts and sought a second opinion. It is remarkable, therefore, that Burkhardt found not just a few but the majority of these deaths to be due to vaccination.

While all four major manufacturers of gene-based vaccines were represented in the sample of patients studied by Burkhardt and Lang, most patients had received an mRNA vaccine from either Pfizer or Moderna. Some of the deceased patients had received both mRNA- and viral vector-based vaccines on separate occasions.

2. Pfizer’s own animal experiments show that the vaccine quickly distributes throughout the body

In order to cause potentially lethal damage, the mRNA vaccines must first distribute from the injection site to other organs. That such distribution occurs is apparent from animal experiments reported by Pfizer to Japanese authorities with its application for vaccine approval in that country [5]. Rats were injected intramuscularly with a radioactively labelled model mRNA vaccine, and the movement of the radiolabel first into the bloodstream and subsequently into various organs was followed for up to 48 hours.

The first thing to note is that the labelled vaccine shows up in the blood plasma after a very short time—within only a quarter of an hour. The plasma level peaks two hours after the injection. As it drops off, the model vaccine accumulates in several other organs. The fastest and highest rise is observed in the liver and the spleen. Very high uptake is also observed with the ovaries and the adrenal glands. Other organs (including the testes) take up significantly lower levels of the model vaccine. We note, however, that at least the blood vessels will be exposed and affected in every organ and in every tissue.

The rapid and widespread distribution of the model vaccine implies that we must expect expression of the spike protein throughout the body. For a more in-depth discussion of this biodistribution study, see Palmer2021b.

3. Expression of viral proteins can be detected with immunohistochemistry

While the distribution of the model vaccine leads us to expect widespread expression of the spike protein, we are here after solid proof. Such proof can be obtained using immunohistochemistry, which method is illustrated in this slide for the vaccine-encoded spike protein.

If a vaccine particle—composed of the spike-encoding mRNA, coated with lipids—enters a body cell, this will cause the spike protein to be synthesized within the cell and then taken to the cell surface. There, it can be recognized by a spike-specific antibody. After washing the tissue specimen to remove unbound antibody molecules, the bound ones can be detected with a secondary antibody that is coupled with some enzyme, often horseradish peroxidase. After another washing step, the specimen is incubated with a water-soluble precursor dye that is converted by the enzyme to an insoluble brown pigment. Each enzyme molecule can rapidly convert a large number of dye molecules, which greatly amplifies the signal.

At the top right of the image, you can see two cells which were exposed to the Pfizer vaccine and then subjected to the protocol outlined above. The intense brown stain indicates that the cells were indeed producing the spike protein.

In short, wherever the brown pigment is deposited, the original antigen—in this example, the spike protein—must have been present. Immunohistochemistry is widely used not only in clinical pathology but also in research; it could readily have been used to detect widespread expression of spike protein in animal trials during preclinical development. However, it appears that the FDA and other regulators never received or demanded such experimental data [6].

4. Expression of spike protein in shoulder muscle after vaccine injection

This slide (by Dr. Burkhardt) shows deltoid muscle fibres in cross section. Several (but not all) of the fibres show strong brown pigmentation, again indicating spike protein expression.

While the expression of spike protein near the injection site is of course expected and highly suggestive, we would like to make certain that such expression is indeed caused by the vaccine and not by a concomitant infection with the SARS-CoV-2 virus. This is particularly important with respect to other tissues and organs which are located far away from the injection site.

5. Coronavirus particles contain two prominent proteins: spike (S) and nucleocapsid (N)

To distinguish between infection and injection, we can again use immunohistochemistry, but this time apply it to another SARS-CoV-2 protein—namely, the nucleocapsid, which is found inside the virus particle, where it enwraps and protects the RNA genome. The rationale of this experiment is simple: cells infected with the virus will express all viral proteins, including the spike and the nucleocapsid. In contrast, the mRNA-based COVID vaccines (as well as the adenovirus vector-based ones produced by AstraZeneca and Janssen) will induce expression only of spike.

6. Infected persons express the nucleocapsid protein (and also the spike protein)

This slide simply illustrates that the method works: lung tissue or cells from a nasal swab of a person infected with SARS-CoV-2 stain positive for nucleocapsid expression, whereas cultured cells exposed to the vaccine do not (but they stain strongly positive for the spike protein; see inset at the top right of Slide 3).

7. Injected persons express only the spike protein, which implicates the vaccine

Here, we see immunohistochemistry applied to heart muscle tissue from an injected person. Staining for the presence of spike protein causes strong brown pigment deposition. In contrast, only very weak, non-specific staining is observed with the antibody that recognizes the nucleocapsid protein. The absence of nucleocapsid indicates that the expression of the spike protein must be attributed ot the vaccine rather than an infection with SARS-CoV-2.

We will see shortly that the strong expression of spike protein in heart muscle after vaccination correlates with significant inflammation and tissue destruction.

8. Expression of spike protein within the walls of small blood vessels

We see spike protein expression in arterioles (small arteries; left) as well as in venules (small veins) and capillaries (right). Expression is most prominent in the innermost cell layer, the endothelium. This makes the endothelial cells “sitting ducks” for an attack by the immune system.

9. Endothelial stripping and destruction of a small blood vessel after vaccination

We now turn to the evidence of immune attack on the endothelial cells which produce the spike protein. On the left, a normal venule, delimited by an intact endothelium and containing some red blood cells and few white blood cells (stained blue) inside.

The image on at the centre shows a venule that is being attacked and destroyed by the immune system. The outline is already dissolving, and the spindle-shaped (and swollen) endothelial cells have peeled off from the vessel wall. Furthermore, we see lymphocytes—the small cells with dark, round nuclei and with very little cytoplasm around them; a single lymphocyte (at much higher magnification) is shown on the right.

Lymphocytes are the backbone of the specific immune system—whenever antigens are recognized and antibodies are produced, this is done by lymphocytes. Also among the lymphocytes we find cytotoxic T cells and natural killer cells, which serve to kill virus-infected cells—or ones that look to them as if infected, because they have been forced to produce a viral protein by a so-called vaccine.

A crucial function of the endothelium is to prevent blood clotting. Thus, if the endothelium is damaged, as it is in this picture, and the tissues beyond it make contact with the blood, this will automatically set off blood clotting.

10. A crack in the wall of the aorta, lined by clusters of lymphocytes, leading to aortic rupture

On the left, a section through the wall of an aorta. This picture is taken at an even lower magnification than the one before; the lymphocytes now appear as just a cloud of tiny blue specks. To the left of this blue cloud, we see a vertical crack running through the tissue. Such a crack is also visible macroscopically in the excised specimen of an aorta shown on the right.

The aorta is the largest blood vessel of the body. It receives the highly pressurized blood ejected by the left ventricle of the heart, and it is thus exposed to intense mechanical stress. If the wall of the aorta is weakened by inflammation, as it is here, then it may crack and rupture. Aortic rupture is normally quite rare, but Prof. Burkhardt found multiple cases in his limited number of autopsies. Some of the affected aortas were also shown to have expressed the spike protein.

11. Healthy heart muscle tissue, and lymphocytic myocarditis

In Slide 7, we saw that heart muscle cells strongly expressed the spike protein after vaccine injection. Here, we see the consequences. The picture on the shows a sample of healthy heart muscle tissue, with regularly oriented and aligned heart muscle fibres. On the right, we see a heart muscle sample from one of the autopsies. The muscle fibres are disjointed and disintegrating, and they are surrounded by invading lymphocytes. Burkhardt found myocarditis in multiple of his deceased patients.

12. Lymphocytic infiltration and proliferative inflammation in lung tissue

On the left, we see healthy lung tissue, with air-filled spaces (the alveoli), delimited by delicate alveolar septa with embedded, blood-filled capillaries. We also see some larger blood vessels.

On the right hand side, we see lung tissue overrun by lymphocytes. The air-filled spaces have largely disappeared and been filled with scar (connective) tissue. This vaccine-injected patient would obviously have had very great trouble breathing.

Lymphocytic infiltration, inflammation and destruction were also observed in many other organs, including the brain, the liver, the spleen, and multiple glands. However, instead of illustrating them all, we will conclude the pathological evidence with another immunohistochemistry result, which strikingly shows the long duration of spike protein expression.

13. Vaccine-induced expression of spike protein in a bronchial biopsy nine months after vaccination

The slide shows a sample of bronchial mucous membrane, from a patient who is alive but has suffered respiratory symptoms ever since being vaccinated. We see several cells in the uppermost cell layer that strongly express spike protein—and this even nine months after his most recent vaccine injection! While this is indeed the most extreme case of long-lasting expression, there is evidence both from Burkhardt’s autopsies and from published studies on blood samples [7] or lymph node biopsies [8] to indicate that expression does last several months.

14. The Pfizer vaccine mRNA gets copied (“reverse-transcribed”) into DNA and inserted into the cellular genome

The official mRNA vaccine narrative maintains that the modified mRNA contained in the vaccine will not be replicated in vivo; expression of the spike protein should therefore cease once the injected RNA molecules have been degraded.

The limited experimental studies available [9,10] suggest that the injected modified mRNA should be degraded within days to a few weeks of the injection. This is obviously difficult to square with the observed long-lasting expression; in some form or other, the genetic information appears to be perpetuated in vivo.

A recent experimental study from Sweden [11] has shown that human-derived cells can copy the Pfizer mRNA vaccine into DNA and then insert it into their own chromosomal DNA. The image shows the key evidence from this study. The cells were exposed to the vaccine for the lengths of time indicated. Cellular DNA was then isolated, and inserted DNA copies of the vaccine mRNA detected by PCR amplification of a fragment 444 base pairs (bp) in length.

All samples labelled with “BNT” had been treated with the vaccine, and they all show a PCR product of the expected length, as is evident from comparison to a DNA fragment length standard (“L”). Samples labelled with “Ctrl n” were controls: Ctrl 1– 4 contained DNA from cells not incubated with vaccine, Ctrl 5 contained RNA (not DNA) from vaccine-treated cells; Ctrl 6 contained the same but was additionally treated with RNAse, which step was also performed in the purification of DNA samples. As expected, none of the control samples contain the PCR product.

Considering Aldén’s observation of DNA insertion in every single experimental sample, it seems highly likely that this will also occur in vivo. Beyond providing a plausible mechanism for perpetuating the expression of spike protein, DNA insertion also poses risks of genetic damage, leading to cancers and leukemias.

15. Summary

The evidence presented here clearly demonstrates a chain of causation from vaccine injection to

  • rapid distribution of the vaccine through the bloodstream,
  • widespread spike protein expression, prominently in blood vessels, and
  • autoimmune-like inflammation and organ damage.

Vaccine-induced vascular damage will promote blood clotting, and clotting-related diseases such as heart attack, stroke, lung embolism are very common in the adverse events databases [4,12].

In addition to autoimmune-like inflammation, other disease mechanisms, including prion-mediated CNS degeneration [13], aberrant vascular protein deposition (amyloidosis) [14,15], and lipid nanoparticle toxicity [16], are plausible but require further study and corroboration. Overall, these vaccines can no longer be considered experimental—the “experiment” has resulted in the disaster that many medical doctors and scientists predicted from the outset [17]. The vaccination must be stopped, and all approvals and authorizations of their use must be revoked.

References

  1. Bozkurt, B. et al. (2021) Myocarditis With COVID-19 mRNA Vaccines. Circulation 144:471-484
  2. Ehrlich, P. et al. (2021) Biopsy-proven lymphocytic myocarditis following first mRNA COVID-19 vaccination in a 40-year-old male: case report. Clinical research in cardiology official journal of the German Cardiac Society 110:1855-1859
  3. Rose, J. and McCullough, P.A. (2021) A Report on Myocarditis Adverse Events in the U.S. Vaccine Adverse Events Reporting System (VAERS) in Association with COVID-19 Injectable Biological Products. Current problems in cardiology p. 101011
  4. Shilhavy, B. (2022) 43,898 Dead, 4,190,493 Injured Following COVID Vaccines in European Database of Adverse Reactions.
  5. Anonymous, (2020) SARS-CoV-2 mRNA Vaccine (BNT162, PF-07302048) 2.6.4 Summary statement of the pharmacokinetic study [English translation].
  6. Latyopva, A. (2022) Did Pfizer Perform Adequate Safety Testing for its Covid-19 mRNA Vaccine in Preclinical Studies? Evidence of Scientific and Regulatory Fraud.
  7. Bansal, S. et al. (2021) Cutting Edge: Circulating Exosomes with COVID Spike Protein Are Induced by BNT162b2 (Pfizer-BioNTech) Vaccination prior to Development of Antibodies: A Novel Mechanism for Immune Activation by mRNA Vaccines. J. Immunol. 207:2405-2410
  8. Röltgen, K. et al. (2022) Immune imprinting, breadth of variant recognition and germinal center response in human SARS-CoV-2 infection and vaccination. Cell (preprint)
  9. Andries, O. et al. (2015) N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release 217:337-344
  10. Pardi, N. et al. (2018) Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J. Exp. Med. 215:1571-1588
  11. Aldén, M. et al. (2022) Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 mRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line. Curr. Issues Mol. Biol. 44:1115-1126
  12. Anonymous, (2021) OpenVAERS.
  13. Perez, J.C. et al. (2022) Towards the emergence of a new form of the neurodegenerative Creutzfeldt-Jakob disease: Twenty six cases of CJD declared a few days after a COVID-19 “vaccine” Jab. ResearchGate (preprint)
  14. Charnley, M. et al. (2022) Neurotoxic amyloidogenic peptides in the proteome of SARS-COV2: potential implications for neurological symptoms in COVID-19. Nat. Commun. 13:3387
  15. Nyström, S. and Hammarström, P. (2022) Amyloidogenesis of SARS-CoV-2 Spike Protein. J. Am. Chem. Soc. 144:8945-8950
  16. Palmer, M. and Bhakdi, S. (2021) The Pfizer mRNA vaccine: Pharmacokinetics and Toxicity.
  17. Bhakdi, S. et al. (2021) Urgent Open Letter from Doctors and Scientists to the European Medicines Agency regarding COVID-19 Vaccine Safety Concerns.

What’s to blame for the surge in excess deaths?

Authors: Ross Clark 19 August 2022, The Spectator

From the beginning, the debate over lockdowns was skewed by the fact that Covid deaths were imminent – and any other effects from lockdown would become apparent over a longer period. But are we beginning to see that now? Over the past few months the Office for National Statistics has been recording ‘excess’ non-covid deaths of around 1,000 a week in England and Wales – that is to say deaths above and beyond the level which would be expected at this time of year. Deaths over the summer months have been more in line with the number of deaths which might be expected in a normal winter.

Many of the excess deaths appear to be from heart and circulatory diseases. Recent heatwaves may have contributed negatively to this – warmer weather has long been associated with excess deaths. But the current bulge in excess deaths can be traced back to April, long before the heatwave. There have been suggestions that Covid could have weakened people’s health and that we are seeing a delayed reaction to being infected with the virus. Others point to delays in NHS treatment, with long waits in A&E.

https://datawrapper.dwcdn.net/aorwZ/1/

But the possibility remains that we are seeing the result of lockdowns – in particular, the failure of people to seek treatment or the difficulty of obtaining a consultation when we were all ordered to stay at home. The first lockdown, for example, resulted in a 33 per cent fall in diagnosis of early-stage cancers. The government was forced to change its messaging when it became clear that telling people to ‘stay at home’ and ‘protect the NHS’ was dissuading many from seeking treatment, even when they had ominous symptoms.

That lockdowns could themselves cause significant excess deaths was suspected by the government. In July 2020, the Department for Health quietly published a study which concluded that the number of Quality Adjusted Life Years (QALYS) from the indirect effects of the pandemic could eventually outstrip the number of QALYS which had been lost to Covid at that point. Covid, it estimated, would cost 530,000 QALYS. But 41,000 would be lost to reduced access to A&E, 73,000 lost to early discharge from hospital and reduced access to primary care services and 45,000 would be lost to delays in elective surgery. An additional 157,000 QALYS would eventually be lost to the effects of recession – and 294,000 to deprivation as a result of lower economic growth in the long term.

This is just modelling, of course – the limitations of which became plain during the pandemic. Moreover, not all these effects can be laid at the door of the government’s decision to order a lockdown. Had the NHS become overwhelmed by Covid cases, there would have been all manner of delays to treatment for other conditions. Lockdown or not, the economy would have taken a hit – although Sweden, which decided against the measure, suffered a lot less, in economic terms, than Britain and other European countries which did call lockdowns.

Nevertheless, the debate on the wisdom of ordering a lockdown in respect to an outbreak of infectious disease is far from over. Studies on the long-term effects are likely to rumble on for years. But the possibility that a lockdown could itself cause excess deaths was certainly known to the government in July 2020 – well before it decided to repeatedly resort to the measure.

Adverse effects of COVID-19 vaccines and measures to prevent them

Authors: Kenji Yamamoto Virol J. 2022; 19: 100. Published online 2022 Jun 5. doi: 10.1186/s12985-022-01831-0 PMCID: PMC9167431PMID: 35659687

Abstract

Recently, The Lancet published a study on the effectiveness of COVID-19 vaccines and the waning of immunity with time. The study showed that immune function among vaccinated individuals 8 months after the administration of two doses of COVID-19 vaccine was lower than that among the unvaccinated individuals. According to European Medicines Agency recommendations, frequent COVID-19 booster shots could adversely affect the immune response and may not be feasible. The decrease in immunity can be caused by several factors such as N1-methylpseudouridine, the spike protein, lipid nanoparticles, antibody-dependent enhancement, and the original antigenic stimulus. These clinical alterations may explain the association reported between COVID-19 vaccination and shingles. As a safety measure, further booster vaccinations should be discontinued. In addition, the date of vaccination should be recorded in the medical record of patients. Several practical measures to prevent a decrease in immunity have been reported. These include limiting the use of non-steroidal anti-inflammatory drugs, including acetaminophen to maintain deep body temperature, appropriate use of antibiotics, smoking cessation, stress control, and limiting the use of lipid emulsions, including propofol, which may cause perioperative immunosuppression. In conclusion, COVID-19 vaccination is a major risk factor for infections in critically ill patients.

COVID Vaccines Increase Adverse Events and Weaken The Immune System

The coronavirus disease (COVID-19) pandemic has led to the widespread use of genetic vaccines, including mRNA and viral vector vaccines. In addition, booster vaccines have been used, but their effectiveness against the highly mutated spike protein of Omicron strains is limited. Recently, The Lancet published a study on the effectiveness of COVID-19 vaccines and the waning of immunity with time [1]. The study showed that immune function among vaccinated individuals 8 months after the administration of two doses of COVID-19 vaccine was lower than that among unvaccinated individuals. These findings were more pronounced in older adults and individuals with pre-existing conditions. According to the European Medicines Agency’s recommendations, frequent COVID-19 booster shots could adversely affect the immune response and may not be feasible [2]. Several countries, including Israel, Chile, and Sweden, are offering the fourth dose to only older adults and other groups rather than to all individuals [3].

The decrease in immunity is caused by several factors. First, N1-methylpseudouridine is used as a substitute for uracil in the genetic code. The modified protein may induce the activation of regulatory T cells, resulting in decreased cellular immunity [4]. Thereby, the spike proteins do not immediately decay following the administration of mRNA vaccines. The spike proteins present on exosomes circulate throughout the body for more than 4 months [5]. In addition, in vivo studies have shown that lipid nanoparticles (LNPs) accumulate in the liver, spleen, adrenal glands, and ovaries [6], and that LNP-encapsulated mRNA is highly inflammatory [7]. Newly generated antibodies of the spike protein damage the cells and tissues that are primed to produce spike proteins [8], and vascular endothelial cells are damaged by spike proteins in the bloodstream [9]; this may damage the immune system organs such as the adrenal gland. Additionally, antibody-dependent enhancement may occur, wherein infection-enhancing antibodies attenuate the effect of neutralizing antibodies in preventing infection [10]. The original antigenic sin [11], that is, the residual immune memory of the Wuhan-type vaccine may prevent the vaccine from being sufficiently effective against variant strains. These mechanisms may also be involved in the exacerbation of COVID-19.

Some studies suggest a link between COVID-19 vaccines and reactivation of the virus that causes shingles [1213]. This condition is sometimes referred to as vaccine-acquired immunodeficiency syndrome [14]. Since December 2021, besides COVID-19, Department of Cardiovascular Surgery, Okamura Memorial Hospital, Shizuoka, Japan (hereinafter referred to as “the institute”) has encountered cases of infections that are difficult to control. For example, there were several cases of suspected infections due to inflammation after open-heart surgery, which could not be controlled even after several weeks of use of multiple antibiotics. The patients showed signs of being immunocompromised, and there were a few deaths. The risk of infection may increase. Various medical algorithms for evaluating postoperative prognosis may have to be revised in the future. The media have so far concealed the adverse events of vaccine administration, such as vaccine-induced immune thrombotic thrombocytopenia (VITT), owing to biased propaganda. The institute encounters many cases in which this cause is recognized. These situations have occurred in waves; however, they are yet to be resolved despite the measures implemented to routinely screen patients admitted for surgery for heparin-induced thrombocytopenia (HIT) antibodies. Four HIT antibody-positive cases have been confirmed at the institute since the start of vaccination; this frequency of HIT antibody-positive cases has rarely been observed before. Fatal cases due to VITT following the administration of COVID-19 vaccines have also been reported [15].

As a safety measure, further booster vaccinations should be discontinued. In addition, the date of vaccination and the time since the last vaccination should be recorded in the medical record of patients. Owing to the lack of awareness of this disease group among physicians and general public in Japan, a history of COVID-19 vaccination is often not documented, as it is in the case of influenza vaccination. The time elapsed since the last COVID-19 vaccination may need to be considered when invasive procedures are required. Several practical measures that can be implemented to prevent a decrease in immunity have been reported [16]. These include limiting the use of non-steroidal anti-inflammatory drugs, including acetaminophen, to maintain deep body temperature, appropriate use of antibiotics, smoking cessation, stress control, and limiting the use of lipid emulsions, including propofol, which may cause perioperative immunosuppression [17].

To date, when comparing the advantages and disadvantages of mRNA vaccines, vaccination has been commonly recommended. As the COVID-19 pandemic becomes better controlled, vaccine sequelae are likely to become more apparent. It has been hypothesized that there will be an increase in cardiovascular diseases, especially acute coronary syndromes, caused by the spike proteins in genetic vaccines [1819]. Besides the risk of infections owing to lowered immune functions, there is a possible risk of unknown organ damage caused by the vaccine that has remained hidden without apparent clinical presentations, mainly in the circulatory system. Therefore, careful risk assessments prior to surgery and invasive medical procedures are essential. Randomized controlled trials are further needed to confirm these clinical observations.

In conclusion, COVID-19 vaccination is a major risk factor for infections in critically ill patients.

References

1. Nordström P, Ballin M, Nordström A. Risk of infection, hospitalisation, and death up to 9 months after a second dose of COVID-19 vaccine: a retrospective, total population cohort study in Sweden. Lancet. 2022;399:814–823. doi: 10.1016/S0140-6736(22)00089-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. European Centre for Disease Prevention and Control. Interim public health considerations for the provision of additional COVID-19 vaccine doses. https://www.ecdc.europa.eu/en/publications-data/covid-19-public-health-considerations-additional-vaccine-doses. Accessed 4 May 2022.

3. Mallapaty S. Fourth dose of COVID vaccine offers only slight boost against Omicron infection. Nature. 2022 doi: 10.1038/D41586-022-00486-9. [CrossRef] [Google Scholar]

4. Krienke C, Kolb L, Diken E, Streuber M, Kirchhoff S, Bukur T, et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science. 2021;371:145–153. doi: 10.1126/science.aay3638. [PubMed] [CrossRef] [Google Scholar]

5. Bansal S, Perincheri S, Fleming T, Poulson C, Tiffany B, Bremner RM, et al. Cutting edge: circulating exosomes with COVID spike protein are induced by BNT162b2 (Pfizer–BioNTech) vaccination prior to development of antibodies: a novel mechanism for immune activation by mRNA vaccines. J Immunol. 2021;207:2405–2410. doi: 10.4049/jimmunol.2100637. [PubMed] [CrossRef] [Google Scholar]

6. BNT162b2 Module 2.4. Nonclinical Overview. FDA-CBER-2021-4379-0000681 JW-v-HHS-prod-3-02418.pdf (judicialwatch.org) Access 6 May 2022.

7. Ndeupen S, Qin Z, Jacobsen S, Bouteau A, Estanbouli H, Igyártó BZ. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. Science. 2021;24:103479. doi: 10.1016/j.isci.2021.103479. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Yamamoto K. Risk of heparinoid use in cosmetics and moisturizers in individuals vaccinated against severe acute respiratory syndrome coronavirus. Thromb J. 2021 doi: 10.1186/s12959-021-00320-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Lei Y, Zhang J, Schiavon CR, He M, Chen L, Shen H, et al. SARS-CoV-2 spike protein impairs endothelial function via downregulation of ACE 2. Circ Res. 2021;128:1323–1326. doi: 10.1161/CIRCRESAHA.121.318902. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Liu Y, Soh WT, Kishikawa JI, Hirose M, Nakayama EE, Li S, et al. An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies. Cell. 2021;184:3452–66.e18. doi: 10.1016/j.cell.2021.05.032. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Cho A, Muecksch F, Schaefer-Babajew D, Wang Z, Finkin S, Gaebler C, et al. Anti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccination. Nature. 2021;600:517–522. doi: 10.1038/s41586-021-04060-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Desai HD, Sharma K, Shah A, Patoliya J, Patil A, Hooshanginezhad Z, et al. Can SARS-CoV-2 vaccine increase the risk of reactivation of Varicella zoster. Systematic review. J Cosmet Dermatol. 2021;20:3350–3361. doi: 10.1111/jocd.14521. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Barda N, Dagan N, Ben-Shlomo Y, Kepten E, Waxman J, Ohana R, et al. Safety of the BNT162b2 mRNA Covid-19 v in a nationwide setting. N Engl J Med. 2021;385:1078–1090. doi: 10.1056/NEJMOA2110475/SUPPL_FILE/NEJMOA2110475_DISCLOSURES.PDF. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Seneff S, Nigh G, Kyriakopoulos AM, McCullough PA. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: the role of G-quadruplexes, exosomes, and MicroRNAs. Food Chem Toxicol. 2022;164:113008. doi: 10.1016/J.FCT.2022.113008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Lee EJ, Cines DB, Gernsheimer T, Kessler C, Michel M, Tarantino MD, et al. Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination. Am J Hematol. 2021;96:534–537. doi: 10.1002/AJH.26132. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Yamamoto K. Five important preventive measures against the exacerbation of coronavirus disease. Anaesthesiol Intensive Ther. 2021;53:358–359. doi: 10.5114/ait.2021.108581. [PubMed] [CrossRef] [Google Scholar]

17. Yamamoto K. Risk of propofol use for sedation in COVID-19 patient. Anaesthesiol Intensive Ther. 2020;52:354–355. doi: 10.5114/ait.2020.100477. [PubMed] [CrossRef] [Google Scholar]

18. Gundry SR. Observational findings of PULS cardiac test findings for inflammatory markers in patients receiving mRNA vaccines. Circulation. 2021;144(suppl_1):A10712–A10712. doi: 10.1161/circ.144.suppl_1.10712. [CrossRef] [Google Scholar]

19. Lai FTT, Li X, Peng K, Huang L, Ip P, Tong X, et al. Carditis After COVID-19 vaccination with a messenger RNA vaccine and an inactivated virus vaccine: a case-control study. Ann Intern Med. 2022;175:362–370. doi: 10.7326/M21-3700. [PMC free article] [PubMed] [CrossRef] [Google Scholar]