Hypoglossal Nerve Palsy Following COVID-19 Vaccination in a Young Adult Complicated by Various Medicines

Authors: Tatsuhiko OkayasuRyuichi OhtaFumiko YamaneSatoshi AbeChiaki Sano

 September 15, 2022 (see history) DOI: 10.7759/cureus.29212 Cite this article as: Okayasu T, Ohta R, Yamane F, et al. (September 15, 2022) Hypoglossal Nerve Palsy Following COVID-19 Vaccination in a Young Adult Complicated by Various Medicines. Cureus 14(9): e29212. doi:10.7759/cureus.29212

Abstract

Mononeuritis multiplex is a rare form of cerebral nerve palsy caused by various factors. Coronavirus disease 2019 (COVID-19) vaccination could be an etiology of mononeuritis multiplex, which can affect various nerves. Post-COVID-19 and vaccination-related neurological impairments involve cranial nerves such as the facial, trigeminal, and vagal nerves. We report our experience with a 34-year-old man who developed hypoglossal nerve palsy following COVID-19 vaccination, complicated by progressive mononeuritis multiplex. Hypoglossal nerve palsy may occur following COVID-19 vaccination. The symptoms vary and may progress without treatment. Physicians should consider the possibility of mononeuritis multiplex after COVID-19 vaccination and provide prompt treatment for acute symptom progression.

Introduction

Mononeuritis multiplex is a rare form of cerebral nerve palsy caused by various factors, as the etiologies, infection, and autoimmunity are common. Herpes zoster and simplex are the predominant infections in the category of infection [1,2]. Among autoimmune causes, small-to-medium-sized vasculitis, such as an antineutrophil cytoplasmic antibody (ANCA)-related vasculitis and Sjogren’s syndrome, are common [1,2]. The progression of mononeuritis multiplex symptoms varies depending on the human body’s etiology and immunological reactions [3,4]. Severe cases may involve multi-extremity paralysis, which should be treated with intravenous immunoglobulin therapy, steroids, and plasma exchange, according to the etiology [2,5]. Thus, effective treatment requires the detection of etiology and rapid treatment.

COVID-19 and COVID-19 vaccinations are also potential etiologies of mononeuritis multiplex, which can affect various nerves. Based on previous reports, post-COVID-19 and vaccination-related neurological impairments involve cranial nerves such as the facial, trigeminal, and vagus nerves [6-8]. However, there are few reports of mononeuritis multiplex following COVID-19 vaccination. Here, we report a case of mononeuritis multiplex that spread from the right hypoglossal nerve to the right hand and leg. The progression was acute, and the patient required treatment with intravenous immunoglobulin and steroid pulse therapy. Various complications occurred during the clinical course, and the treatment course was complicated. Our case demonstrates the importance of a clinical diagnosis of mononeuritis multiplex with prompt treatment and approaches to reduce long-term complications.

Case Presentation

A 34-year-old man was admitted to our hospital with a chief complaint of dysphasia and difficulty speaking. Ten days before admission, the patient had received the third vaccination for COVID-19. He had a fever of >38 °C one day after vaccination. Seven days before admission, he experienced tingling on the right side of his tongue, followed by dysphagia and difficulty speaking. These symptoms progressed, and the patient noticed that the right side of his tongue had shrunk; therefore, he visited our hospital. He had a past medical history of varicella-zoster virus infection in the first branch of the left trigeminal nerve and had been treated with valaciclovir. The patient did not take any regular medication.

His vital signs at admission were as follows: blood pressure, 114/59 mmHg; pulse rate, 78 beats/min; body temperature, 36.9 °C, respiratory rate, 15 breaths/min; and oxygen saturation, 97% on room air. He was alert to time and place. Physical examination showed that the right half of his tongue was atrophied and shifted to the right during the prostration.

No other abnormal neurological findings were noted. There were no obvious abnormalities in the chest or abdomen and no skin eruptions. Physical examination revealed right hypoglossal nerve palsy; thus, viral infection, brain stroke, brain tumor, meningitis, ANCA-related vasculitis, and Guillain-Barre syndrome was suspected. Blood tests, head magnetic resonance imaging (MRI), head computed tomography (CT), and lumbar puncture were performed. The results were within normal limits (Table 1).

MarkerLevelReference
White blood cells6.83.5–9.1 × 103/μL
Neutrophils5144.0–72.0%
Lymphocytes32.918.0–59.0%
Monocytes80.0–12.0%
Eosinophils6.90.0–10.0%
Basophils1.20.0–3.0%
Red blood cells5.343.76–5.50 × 106/μL
Hemoglobin1611.3–15.2 g/dL
Hematocrit47.833.4–44.9%
Mean corpuscular volume89.579.0–100.0 fl
Platelets24.613.0–36.9 × 104/μL
Total protein6.96.5–8.3 g/dL
Albumin4.43.8–5.3 g/dL
Total bilirubin0.50.2–1.2 mg/dL
Aspartate aminotransferase188–38 IU/L
Alanine aminotransferase274–43 IU/L
Alkaline phosphatase80106–322 U/L
γ-Glutamyl transpeptidase50<48 IU/L
Lactate dehydrogenase165121–245 U/L
Blood urea nitrogen13.98–20 mg/dL
Creatinine0.660.40–1.10 mg/dL
eGFR≥90> 60.0 mL/min/1.73 m2
Serum Na137135–150 mEq/L
Serum K3.93.5–5.3 mEq/L
Serum Cl10198–110 mEq/L
Serum P3.12.7–4.6 mg/dL
Serum Mg21.8–2.3 mg/dL
CK11256–244 U/L
CRP0.07<0.30 mg/dL
Artery blood gas analysis  
pH7.4187.35–7.45 
PCO242.535.0–45.0 mmHg
PO289.375.0–100.0 mmHg
HCO326.920.0–26.0 mmol/L
Lactate1.20.5–1.6 mmol/L
Cerebrospinal fluid testing  
Colorclear 
Cell count10–5 /μL
Protein3615–45 mg/dL
Glucose5748–83 mg/dL
Chloride126.5113–128 mEq/L
Table 1: Initial laboratory data of the patient

eGFR: estimated glomerular filtration rate; CK: creatine kinase; CRP: C-reactive protein

A videoendoscopic examination of swallowing was performed to evaluate dysphagia, with no obvious problems associated with swallowing function. Since the difficulty in moving the tongue and the white coating was remarkable, the patient was referred to a dental and oral surgeon to rule out tongue cancer.

Because the patient had a history of herpes zoster, we also considered viral reactivation and prescribed acyclovir (1500 mg/day) and prednisolone (60 mg/day) from the second day of admission. However, lumbar pain and headache appeared on day four of admission, for which epidural hematoma after lumbar puncture was suspected. Plain lumbar magnetic MRI and head CT showed edematous findings around both kidneys, clinically suggesting the possibility of acute kidney injury due to acyclovir. As the patient tested negative for varicella virus, acyclovir was discontinued (Figure 2).

Edematous-findings-around-both-kidneys-(blue-arrows)
Figure 2: Edematous findings around both kidneys (blue arrows)

On the seventh day of illness, weakness of the right upper and lower extremities and a Romberg’s sign was observed. Plain MRI of the upper arm and nerve conduction velocity tests were performed to investigate the cause, with no positive findings. Blood tests were negative for syphilis, hepatitis, HIV, ANCA, antinuclear antibody, and IgG4. Therefore, a clinical diagnosis of mononeuritis multiplex after administering the COVID-19 vaccine was made. On day seven of admission, prednisolone (60 mg/day), intravenous immunoglobulin (0.4 g/kg/day for five days), and methylprednisolone (1 g/day for three days) were initiated after consultation with a neurology physician. On day nine of admission, muscle pain, and general malaise developed immediately after intravenous methylprednisolone administration. As intravenous methylprednisolone could be the cause, the administration was discontinued, and oral prednisolone (60 mg/day) was started. Subsequently, a tingling pain appeared on the right scalp. He was treated with valacyclovir (3 g/day for one week). Dysphagia and extremity weakness gradually improved after rehabilitation. On day 14, after admission, the patient was transferred to a university hospital for further investigation and advanced rehabilitation.

Discussion

This case showed the possibility of hypoglossal nerve palsy as a rare complication of COVID-19 vaccination, specific neurological complications following COVID-19 vaccination, and the rapid treatment of mononeuritis multiplex to prevent symptom progression.

The relationship between the COVID-19 vaccine and mononeuritis multiplex has been discussed in various studies. Several case reports have shown an increased risk of mononeuritis multiplex within a few days to months after COVID-19 vaccination [8,9]. A review of COVID-19 vaccination also showed that most symptoms related to mononeuritis multiplex were mild and disappeared naturally [10]. However, some cases show severe symptoms that affect the patient’s activities of daily life and require intensive treatment [7,11]. Our patient initially had mild symptoms and did not require treatment for his vital symptoms. However, within one week, the symptoms progressed drastically from the tongue to the extremities, causing difficulties in walking. The clinical course of mononeuritis multiplex varies, and some cases caused by vasculitis from autoimmune and infectious diseases may be progressive [5,12]. Precise follow-up and prompt treatment with intravenous immunoglobulins and steroids should be initiated to prevent disease progression.

Hypoglossal nerve palsy could be a rare symptom following COVID-19 vaccination and warrants further investigation in future studies. Among the complications of COVID-19 vaccination, various neurological complications were reported in 2020 [9,10]. Guillain-Barre syndrome is a well-known but rare complication of COVID-19 vaccination and appears a few weeks after vaccination [13]. Other cranial nerves may also be involved in the complications of COVID-19. Several case reports and reviews have reported facial palsy, the pain of the trigeminal and facial nerves, and diplopia of the oculomotor nerves [10,14]. However, hypoglossal nerve palsy is rare, and its pathophysiology remains unclear. In the present case, the initial finding was difficulty in tongue movement caused by palsy of the hypoglossal nerves, which led to systemic neurological symptoms. Clinicians should consider assessing single cranial symptoms following COVID-19 because of the possible spread of multiple nerve symptoms, causing a decreased quality of life.

The COVID-19 pandemic may persist in the future; therefore, preventable measures are vital. Vaccination is a critical measure for prevention. Although various complications have been reported, they are rare; therefore, vaccination should be promoted [15,16]. However, the possible symptoms following COVID-19 vaccination should be appropriately described, and help-seeking behaviors (HSB) to medical facilities should be facilitated, especially in rural contexts lacking healthcare resources [17-19]. The patient in the present case was younger, but the duration of his visit to the hospital was nearly two weeks. Early treatment could have prevented symptom progression [14]. When the same symptoms occur in older patients, HSB varies and is challenging, causing a greater delay in treatment. Citizens and healthcare professionals should be educated regarding responses to symptoms following vaccination, and information provision should be promoted [20].

Conclusions

Hypoglossal nerve palsy may be a symptom of COVID-19 vaccination. The symptoms vary and may progress without treatment. Physicians should consider the possibility of mononeuritis multiplex after COVID-19 vaccination and provide prompt treatment for acute symptom progression.


References

  1. Mutluay B, Koksal A, Karagoz N, et al.: Early detection of mononeuritis multiplex & diagnosis of systemic diseases thru electrophysiological work out with polyneuropathy as preceeding symptom. J Neurol Sci. 2015, 357:341. 10.1016/j.jns.2015.08.1212
  2. Ghazaei F, Sabet R, Raissi GR: Vasculitic mononeuritis multiplex may be misdiagnosed as carpal tunnel syndrome. Am J Phys Med Rehabil. 2017, 96:e44-7. 10.1097/PHM.0000000000000562
  3. Marques IB, Giovannoni G, Marta M: Mononeuritis multiplex as the first presentation of refractory sarcoidosis responsive to etanercept. BMC Neurol. 2014, 14:237. 10.1186/s12883-014-0237-5
  4. Tanemoto M, Hisahara S, Hirose B, et al.: Severe mononeuritis multiplex due to rheumatoid vasculitis in rheumatoid arthritis in sustained clinical remission for decades. Intern Med. 2020, 59:705-10. 10.2169/internalmedicine.3866-19
  5. Tokonami A, Ohta R, Katagiri N, Yoshioka N, Yamane F, Sano C: Autoimmune vasculitis causing acute bilateral lower limb paralysis. Cureus. 2022, 14:e27651. 10.7759/cureus.27651
  6. Enrique E-R, Javier B, Hernando R, Herney Andrés G: Mononeuritis multiplex associated with SARS-CoV2-COVID-19 infection: case report. Int J Neurol Neurother. 2020, 7:102. 10.23937/2378-3001/1410102
  7. Needham E, Newcombe V, Michell A, et al.: Mononeuritis multiplex: an unexpectedly frequent feature of severe COVID-19. J Neurol. 2021, 268:2685-9. 10.1007/s00415-020-10321-8
  8. Andalib S, Biller J, Di Napoli M, et al.: Peripheral nervous system manifestations associated with COVID-19. Curr Neurol Neurosci Rep. 2021, 21:9. 10.1007/s11910-021-01102-5
  9. Taga A, Lauria G: COVID-19 and the peripheral nervous system. A 2-year review from the pandemic to the vaccine era. J Peripher Nerv Syst. 2022, 27:4-30. 10.1111/jns.12482
  10. Finsterer J, Scorza FA, Scorza C, Fiorini A: COVID-19 associated cranial nerve neuropathy: A systematic review. Bosn J Basic Med Sci. 2022, 22:39-45. 10.17305/bjbms.2021.6341
  11. Oaklander AL, Mills AJ, Kelley M, Toran LS, Smith B, Dalakas MC, Nath A: Peripheral neuropathy evaluations of patients With prolonged long COVID. Neurol Neuroimmunol Neuroinflamm. 2022, 9:10.1212/NXI.0000000000001146
  12. Abdelhakim S, Klapholz JD, Roy B, Weiss SA, McGuone D, Corbin ZA: Mononeuritis multiplex as a rare and severe neurological complication of immune checkpoint inhibitors: a case report. J Med Case Rep. 2022, 16:81. 10.1186/s13256-022-03290-1
  13. Raahimi MM, Kane A, Moore CE, Alareed AW: Late onset of Guillain-Barré syndrome following SARS-CoV-2 infection: part of ‘long COVID-19 syndrome’?. BMJ Case Rep. 2021, 14:10.1136/bcr-2020-240178
  14. Hasan I, Saif-Ur-Rahman KM, Hayat S, et al.: Guillain-Barré syndrome associated with SARS-CoV-2 infection: A systematic review and individual participant data meta-analysis. J Peripher Nerv Syst. 2020, 25:335-43. 10.1111/jns.12419
  15. Machida M, Nakamura I, Kojima T, et al.: Acceptance of a COVID-19 vaccine in Japan during the COVID-19 pandemic. Vaccines (Basel). 2021, 9:10.3390/vaccines9030210
  16. García-Montero C, Fraile-Martínez O, Bravo C, et al.: An updated review of SARS-CoV-2 vaccines and the importance of effective vaccination programs in pandemic times. Vaccines (Basel). 2021, 9:10.3390/vaccines9050433
  17. Cornally N, McCarthy G: Help-seeking behaviour: a concept analysis. Int J Nurs Pract. 2011, 17:280-8. 10.1111/j.1440-172X.2011.01936.x
  18. Ohta R, Ryu Y, Sano C: Older people’s help-seeking behaviors in rural contexts: A systematic review. Int J Environ Res Public Health. 2022, 19:10.3390/ijerph19063233
  19. Shaw C, Brittain K, Tansey R, Williams K: How people decide to seek health care: a qualitative study. Int J Nurs Stud. 2008, 45:1516-24. 10.1016/j.ijnurstu.2007.11.005
  20. Ohta R, Ryu Y, Kitayuguchi J, Sano C, Könings KD: Educational intervention to improve citizen’s healthcare participation perception in rural Japanese communities: A pilot study. Int J Environ Res Public Health. 2021, 18:10.3390/ijerph18041782

What Is COVID Tongue, and What Does It Mean?

Authors: Medically reviewed by Elizabeth Thottacherry, MD — By S. Behring — Updated on January 20, 2022 HealthLine

In March 2020, the World Health Organization (WHO) declared a pandemic in response to the spread of the COVID-19 infection.

Since then, more than 50 million casesTrusted Source occurred in the United States alone. Medical professionals gathered data to determine the symptoms of COVID-19. The early symptoms observed included fatigue, shortness of breath, and fever.

But as COVID-19 cases continue, new symptoms are documented, including a rare symptom known as COVID tongue. People with COVID tongue have swollen tongues that might develop bumps, ulcers, and white patches. Read on to learn more about this unusual COVID-19 symptom.

What is COVID tongue?

Along with the more well-known symptoms of COVID-19, some people experience bumps, ulcers, swelling, and inflammation of the tongue. This is known as “COVID tongue.”

People with COVID tongue might notice that the top of their tongue looks white and patchy, or that their tongue looks red and feels swollen. They sometimes find bumps or open areas called ulcers on their tongue. Additionally, many people with COVID tongue report experiencing a loss of taste and a burning sensation in their mouth.

2021 study documented COVID tongue as a possible COVID-19 symptom. But just like many things about COVID-19, there’s a lot we don’t know right now about COVID tongue.

What’s happening inside your body to cause COVID tongue?

Another reason there are many questions about COVID tongue is that there are several possible causes. It’s common for illnesses and infections to cause changes to your tongue.

What looks like COVID tongue could easily be a symptom of a different viral or bacterial infection. Even when the bumps and swelling are clearly connected to COVID, there are many possible reasons. COVID tongue might be caused by:

  • A high number of ACE receptors in your tongue. ACE receptors are proteins found on cells in your body. When the virus that causes COVID-19, SARS-CoV-2, attaches to ACE receptors, it can get into your cells. You have many ACE receptors in your tongue, which could lead to swellingTrusted Source when you have a COVID-19 infection.
  • Your immune system fighting COVID-19. When your immune system is fighting a bacterial or viral infection, it can cause swelling throughout your body. This could include the tongue swelling associated with COVID tongue.
  • COVID-causing oral thrush. Oral thrush is a fungus in your mouth that can be caused by a number of infections. This might include COVID-19. Plus, oral thrush is a side effect of some medications used to treat COVID-19.
  • Changes to the surface of your tongue. Infections sometimes lead to changes on the surface of your tongue, such as mouth ulcers and other symptoms. It’s possible COVID-19 can lead to this sort of change as well.
  • Dry mouth. COVID-19 can affect your salivary glands and cause them to secrete less saliva. This could lead to dry mouth. Research shows that dry mouth can lead to multiple other oral health concerns.
  • COVID-activating oral herpes. The inflammation caused by COVID-19 can activate other viruses in your body. This might include the herpes simplex virus, which lays dormant in your body even when you don’t have symptoms. COVID-19 could causeTrusted Source the herpes virus to activate and cause mouth ulcers.

COVID tongue could be caused by any one of these factors or by a combination of them. There’s also a chance that COVID tongue is sometimes caused by breathing tubes and other COVID treatments that could irritate your mouth and lead to a swollen tongue.

Until we know more about COVID-19, we won’t know the exact cause of COVID tongue.

How many people get COVID tongue?

Currently, scientists don’t know how rare COVID tongue is. In one small study, up to 11 percent of people hospitalized with COVID-19 had COVID tongue, but such studies are too small to make a conclusion.

As more data from hospitals around the world come in, we might get a better idea of how common COVID tongue is.

Many people with COVID-19 have mild or moderate symptoms and can recover at home. But right now, even less is known about how many people in this group develop COVID tongue. Often they recover without contacting a doctor at all, so their symptoms are never recorded.

Even when people with mild or moderate COVID-19 do seek treatment, they often wear masks or use telehealth for a video appointment. That makes it difficult for medical professionals to see their tongues and document any abnormalities.

What is the treatment for COVID tongue?

There is currently no single set treatment for COVID tongue. You might not need treatment targeted to COVID tongue. In some cases, the treatments you already receive for COVID will be enough to resolve COVID tongue.

When COVID tongue is more severe and doesn’t respond to overall treatment, you might receive specialized treatment. This could include:

  • corticosteroids or other anti-inflammatory medications to bring down tongue swelling
  • antibacterial, antiviral, or antifungal mouth rinses to treat bumps, patches, and ulcers
  • artificial saliva mouth rinses to help combat dry mouth and promote overall tongue healing
  • low level laser therapy to treat ulcers

Treatment for swollen tongue

COVID-19 may cause the tongue to swell. Tongue swelling can quickly become a medical emergency if your airway becomes blocked. If you think your tongue is swelling, seek medical attention immediately.

The treatment for a swollen tongue is designed to reduce the swelling and relieve pain and discomfort.

Treatment options for swollen tongue include:

  • over-the-counter medications such as ibuprofen (Advil)
  • prescription anti-inflammatory medications
  • medications to treat the underlying condition causing your tongue to swell

What to do if your tongue swells

Call 911 if your tongue swells and you feel like it’s harder to breathe. Do not drive yourself to the ER because your condition could worsen on the way. For many people, calling 911 means help will reach you faster than going to an ER.

  • Have someone stay with you until help arrives.
  • Contact your healthcare professional immediately if you notice that your tongue swells.
  • If you have mild tongue swelling that gets worse, contact your doctor or healthcare professional immediately for an examination.

What’s the outlook for people with COVID tongue?

It’s currently unclear whether COVID tongue is an early symptom of COVID-19, or a symptom that develops as the condition progresses.

No matter when it develops, you might also have other, more-common COVID-19 symptoms:

  • fever
  • cough
  • shortness of breath
  • fatigue
  • nausea
  • pain

Studies are being done to see if COVID tongue is an early or warning symptom.

Mild to moderate COVID-19

People with mild and moderate cases of COVID-19 usually recover at home without medical intervention. Rates of recovery are also improving for people hospitalized with COVID-19 as doctors learn how to best treat the infection.

But since COVID-19 is still a relatively new illness, we don’t know for sure right now what the long-term effects for people will be. Some symptoms of COVID-19 might linger for weeks or even months.

Geographic tongue

While research on COVID tongue is limited now, we do know that viral infections can sometimes lead to a condition called geographic tongue.

This condition causes smooth red patches with white borders to appear on your tongue and can last for months — or even years. Geographic tongue doesn’t generally cause pain or other health concerns, but flare-ups can make it difficult to eat spicy foods.

It’s currently unclear whether COVID tongue is related to geographic tongue, or whether COVID-19 can lead to geographic tongue. As more people recover from COVID-19 and more data become available, doctors will have a better understanding of COVID tongue and any possible long-term effects.

If you have COVID-19 and are experiencing any mouth or tongue health concerns, talk with your doctor.

The bottom line

Some people with COVID-19 develop bumps, white patches, and swelling on their tongues. This is known as COVID tongue and it’s still being studied.

Right now, there are a lot of unanswered questions about COVID tongue. We currently don’t know how many people get COVID tongue or what causes it. More information about COVID tongue will be available as doctors learn more about COVID tongue and more research occurs.

Study reveals mouth as primary source of COVID-19 infection

While most COVID-19 research has focused on the nose and lungs, this is the first study to identify the mouth as a primary site for coronavirus infection and underscores the importance of wearing a face covering and physical distancing.

By University Communications, Thursday, October 29th, 2020

A team of researchers led by the University of North Carolina at Chapel Hill and the National Institute of Dental and Craniofacial Research reveals coronavirus can take hold in the salivary glands where it replicates, and in some cases, leads to prolonged disease when infected saliva is swallowed into the gastrointestinal tract or aspirated to the lungs where it can lead to pneumonia.

While most COVID-19 research has focused on the nose and lungs, this is the first study to identify the mouth as a primary site for coronavirus infection and underscores the importance of wearing a face covering and physical distancing. The results have not been peer-reviewed.

“Our results show oral infection of COVID-19 may be underappreciated,” said senior study author Kevin M. Byrd, research instructor at the UNC Adams School of Dentistry and the Anthony R. Volpe Research Scholar at the American Dental Association Science and Research Institute. “Like nasal infection, oral infection could underlie the asymptomatic spread that makes this disease so hard to contain.”

Byrd along with Blake Warner, chief of the Salivary Disorders Unit at the National Institute of Dental and Craniofacial Research, coordinated the research conducted at the National Institutes of Health, Wellcome Sanger Institute, UNC Marsico Lung Institute and the J. Craig Venter Institute.

Researchers are just beginning to explore the oral symptoms patients experience during COVID-19, such as loss of taste or smell and persistent dry mouth.

In the study, researchers report preliminary results from a clinical trial of 40 subjects with COVID-19 which showed sloughed epithelial cells lining the mouth can be infected with SARS-CoV-2, the coronavirus that causes COVID-19. The amount of virus in patient saliva was positively correlated with taste and smell changes, according to the study.

Relying on oral cell identity maps, researchers also looked at where in the mouth the virus infects. They surveyed oral tissues with the highest levels of ACE2, the receptor that helps coronavirus grab and invade human cells.

Based on ACE2 expression and analysis of cadaver tissue, the most likely sites of infection in the mouth are the salivary glands, tongue and tonsil, the study showed.

The findings provide more evidence of the role of saliva in COVID-19. COVID-19 infection, specifically in the mouth, can allow the virus to spread internally and to others as the infected person breathes, speaks and coughs.

For More Information: https://www.unc.edu/posts/2020/10/29/study-reveals-mouth-as-primary-source-of-covid-19-infection/

Age-dependent appearance of SARS-CoV-2 entry sites in mouse chemosensory systems reflects COVID-19 anosmia-ageusia symptoms

Authors: Julien Brechbühl,Ana Catarina Lopes,Dean Wood,Sofiane Bouteiller,Aurélie de Vallière,Chantal Verdumo, and Marie-Christine Broillet

Abstract

COVID-19 pandemic has given rise to a collective scientific effort to study its viral causing agent SARS-CoV-2. Research is focusing in particular on its infection mechanisms and on the associated-disease symptoms. Interestingly, this environmental pathogen directly affects the human chemosensory systems leading to anosmia and ageusia. Evidence for the presence of the cellular entry sites of the virus, the ACE2/TMPRSS2 proteins, has been reported in non-chemosensory cells in the rodent’s nose and mouth, missing a direct correlation between the symptoms reported in patients and the observed direct viral infection in human sensory cells. Here, mapping the gene and protein expression of ACE2/TMPRSS2 in the mouse olfactory and gustatory cells, we precisely identify the virus target cells to be of basal and sensory origin and reveal the age-dependent appearance of viral entry-sites. Our results propose an alternative interpretation of the human viral-induced sensory symptoms and give investigative perspectives on animal models.

Introduction

The Corona Virus Disease 2019 (COVID-19) has federated worldwide scientific efforts for understanding the viral epidemiological mechanisms of the coronavirus 2 (SARS-CoV-2) that causes this severe acute respiratory syndrome. In humans, the viral syndrome is characterized by an increased mortality rate in aged and/or comorbidity patients associated with the upper respiratory infection symptoms, such as severe respiratory distress13. In addition to its major impact, COVID-19 is associated by its direct alteration of human olfaction and gustation, in absence of substantial nasal inflammation or coryzal signs, resulting to anosmia and ageusia in up to 77% of the patients47. While these sensory symptoms are well established and intensely affect everyday behaviors8,9, the precise related mechanisms remain elusive10.

The target cells of the virus share a molecular signature: the concomitant cellular expression of the angiotensin-converting enzyme 2 (ACE2) and of its facilitating transmembrane serine protease 2 (TMPRSS2), which plays a crucial role for the interaction of viral spike proteins with the host cell1113. Paradoxically, these entry sites seem to be lacking in sensory cells1418, while a direct SARS-CoV-2 contamination has been observed both in humans and rodents19,20, requesting further investigations to explain the sensory-associated symptoms2124. Therefore, the characterization of the animal model is necessary prior to its use to understand the causality underling the viral-induced sensory symptoms.

The use of mice is indeed limited for epidemiological studies due to their absence of hands, which, with aerosols, are the foremost passages of interindividual viral transmission25, as well as their published lack of SARS-CoV-2 ACE2-spike protein affinity26,27. Nevertheless, the ease of production of genetically modified mice and their scientific availability, as well as their well-studied and specialized chemosensory systems2830, make them a valuable ally for the development of potential prophylactic and protective treatments related to these sensory symptoms.

Thus, we aimed here at characterizing the potential viral entry sites across mouse sensory systems. We found SARS-CoV-2 entry cells to be of different origins depending on the sensory systems. In summary, the virus could target cells involved in tissue regulation such as the supporting cells of the olfactory receptor neurons and the regenerative basal cells but also, specifically, the chemosensory cells of both gustatory and olfactory systems. We finally revealed that the emergence of viral entry sites in sensory and basal cells only occurs with age, which could explain both, the observed COVID-19 long-lasting effects and the age-dependent sensory-symptomatology in human.

For More Information: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282876/