Risk of blood clots in lung doubled for Covid survivors

Authors: FMT May 25, 2022

Coronavirus survivors have twice the risk of developing dangerous blood clots that travel to their lungs compared to people who weren’t infected, as well double the chance of respiratory symptoms, a large new study said Tuesday.

The research by the Centers for Disease Control and Prevention found that as many as one in five adults aged 18-64 years and one in four of those over 65 went on to experience health conditions that could be related to their bout of Covid — a finding consistent with other research.

Among all conditions, the risk of developing acute pulmonary embolism — a clot in an artery of the lung — increased the most, by a factor of two in both adults younger and older than 65, as did respiratory symptoms like chronic cough or shortness of breath.

Pulmonary embolisms usually travel to the lungs from a deep vein in the legs, and can cause serious problems, including lung damage, low oxygen levels and death.

The study was based on more than 350,000 patient records of people who had Covid-19 from March 2020 – November 2021, paired with 1.6 million people in a “control” group who had sought medical attention in the same month as a corresponding “case” patient but weren’t diagnosed with Covid.

The team assessed the records for the occurrence of 26 clinical conditions previously associated with long Covid.

Patients were followed one month out from the time they were first seen until they developed a subsequent condition, or until a year had passed, whichever came first.

The most common conditions in both age groups were respiratory symptoms and musculoskeletal pain.

In patients under 65, risks after Covid elevated for most types of conditions, but no significant differences were observed for cerebrovascular disease, mental health conditions, or substance-related disorders.

“Covid-19 severity and illness duration can affect patients’ health care needs and economic well-being,” the authors wrote.

“The occurrence of incident conditions following infection might also affect a patient’s ability to contribute to the workforce and might have economic consequences for survivors and their dependents,” as well as placing added strain on health systems.

Limitations of the study included the fact that data on sex, race, and geographic region were not considered, nor was vaccination status. Because of the time period, the study also didn’t factor in newer variants.

The Thorny Problem Of COVID-19 Vaccines And Spike Proteins

Authors: W. Glen Pyle

Almost since the beginning of the COVID-19 pandemic, a piece of the SARS-CoV2 virus called the “spike protein” has drawn interest from researchers and healthcare professionals.

New research by Yuyang Lei and colleagues published in the journal Circulation Research sheds new light on how the spike protein might play a critical role in the widespread damage caused by SARS-CoV2, and offers insight into treating the complications of COVID-19.

Vaccine skeptics have seized on the study to cast doubt on the safety of vaccines. But a review of the study’s findings shows that the concerns raised by vaccine doubters are much ado about nothing.

The Study

The vascular endothelium is an important player in the illness and death associated with COVID-19. The endothelium is a system of cells that line and protect the inside of blood vessels. SARS-CoV2 injures the endothelium leading to blood clots, heart attack, pulmonary embolism, and stroke. Despite the established link between COVID-19 and these cardiovascular complications, the mechanism by which they develop is unknown.

Researchers from Jiaotong University; the University of California, San Diego; and the Salk Institute used a pseudovirus coated with spike protein to investigate the effects of the viral protein on endothelial cells. Pseudoviruses – which were first developed over 50 years ago – contain the outer shell of the virus, but they lack the viral genes needed to reproduce.

Hamsters treated with the spike protein coated pseudovirus showed lung damage similar to that seen in humans infected with SARS-CoV2. When researchers added pseudovirus to cultured endothelial cells they found that the mitochondria inside the cells were injured. Since mitochondria are responsible for providing energy to cells, their dysfunction can cause cell death.

When isolated pulmonary arteries were exposed to the spike protein carrying pseudovirus there was some disruption in the ability of the blood vessels to dilate. The decreased ability to expand blood vessels that serve the lungs could impair the ability of the body to take up oxygen from lungs that are damaged by the virus.

The novelty of this study was the discovery that the spike protein itself causes damage, and that the pathway triggered by the spike protein could explain the widespread cardiovascular complications that develop in COVID-19 patients.

For More Information: https://www.science20.com/w_glen_pyle/the_thorny_problem_of_covid19_vaccines_and_spike_proteins-254373