What heart and stroke patients need to know about COVID-19 in 2022

Authors: Michael Merschel, American Heart Association News

Two years into the pandemic, researchers have learned a lot about how COVID-19 affects people with heart disease and stroke survivors. But like the coronavirus itself, what everyone needs to know keeps evolving.

“You can’t assume that what was true three months ago is true now,” said Dr. James de Lemos, a cardiologist at UT Southwestern Medical Center in Dallas. Thanks to the omicron variant, “it’s a fundamentally different pandemic than it was at Thanksgiving.”

Early data suggests omicron causes less severe illness but spreads more easily than its predecessors. So heart and stroke patients need to protect themselves, starting with understanding that COVID-19 still is a threat to their health.

“Early on, we recognized that the risk was higher for those with pre-existing cardiovascular disease,” said Dr. Biykem Bozkurt, a cardiologist at Baylor College of Medicine in Houston. According to the Centers for Disease Control and Prevention, people with conditions such as heart failure, coronary artery disease and possibly high blood pressure may be more likely to get severely ill from COVID-19. So can people who have diabetes, are overweight or are recovering from a stroke.

SARS-CoV-2, the virus that causes COVID-19, also has been linked to increased risk of several cardiovascular conditions. According to a September 2021 report from the CDC, people with COVID-19 are nearly 16 times more likely to have heart inflammation, or myocarditis, than uninfected people. The report found about 150 cases per 100,000 people with COVID-19 versus about nine cases per 100,000 people without the virus.

In addition, an August 2021 study in the New England Journal of Medicine showed people with the coronavirus may have a significantly higher, albeit rare, risk of intracranial hemorrhage, or brain bleeding; heart attack; and having an arrhythmia, or abnormal heartbeat.

Researchers don’t have full data on omicron’s effects yet, Bozkurt said, but it’s still affecting people who are vulnerable. “And that’s why the hospitals right now are full.”

The risks of any one person having a severe problem from the new variant are relatively small, de Lemos said. “But the flipside is, given how many people are getting infected right now, the cumulative number of people with COVID-19 complications is still very large.”

De Lemos, who helped create the American Heart Association’s COVID-19 Cardiovascular Disease Registry, said omicron “is obviously wildly more infectious and able to evade the vaccine to some extent, although it does appear that the vaccine seems to prevent severe infections and hospitalizations.”

And overall, “we don’t know a ton about specifically why certain patients with heart disease do less well,” he said, although understanding has evolved over time.

In the beginning, de Lemos said, doctors feared the virus directly infected the heart muscle. “That doesn’t really appear to be the case,” he said.

Instead, it appears that in severe cases, the virus is inflaming the lining of blood vessels of the heart and increasing the likelihood of clotting in the smallest vessels, he said.

COVID-19 also can overwhelm the heart by making it work harder to pump oxygenated blood through the body as the lungs are overwhelmed.

But as they’ve learned more about the coronavirus, doctors have gotten better at fighting it. For example, de Lemos said, they now work proactively to treat blood-clotting disorders in hospitalized patients. And although researchers are working to understand lingering effects known as “long COVID,” it appears long-term implications for the heart look favorable.

“The vast majority of people who have mild COVID infections really appear to have nothing to worry about with their hearts,” he said. “That’s good news, I think, and doesn’t get emphasized enough.”

People with existing heart conditions or a history of stroke still need to protect themselves, and have many ways of doing so.

“Number one: Get vaccinated,” said Bozkurt, who has studied COVID-19 vaccine side effects. “And please, do get a booster.” Reports of rare cases of vaccine-related myocarditis, particularly in younger males, should not dissuade anybody with an existing condition. Most people with pre-existing cardiovascular disease are not young adult males, she noted. And regardless of age, the benefits from vaccines outweigh the risks.

Given how the vaccines don’t seem to be as protective against the spread of omicron, de Lemos said if you’re a heart disease or stroke patient, hunker down for the next several weeks until this wave passes, “and then you’ll be able to re-emerge.”

Patients should avoid indoor crowds, he said, and use a KN95 mask or, when possible, an N95 mask instead of cloth masks when being in a crowd is necessary.

Bozkurt said heart and stroke patients should keep in contact with their health care team and continue taking medications as prescribed. Anybody with symptoms that could be heart-related should seek care immediately. “Do not delay,” she said.

Both doctors said it was important to get information from reliable sources. Some false remedies promoted on social media can actually damage the heart, Bozkurt said.

De Lemos acknowledged that even from reliable sources, advice can shift. “I would say that the information is written in pencil, not in pen, because things are changing so fast.” It can be frustrating for him, even as a scientist, when experts disagree or alter their recommendations, but “that’s the way science goes.”

And even as COVID-19 “remains a bizarrely arbitrary virus in terms of who gets sick and who doesn’t,” he’s optimistic.

“Think about all the progress we’ve made in a year or two, and the remarkable effect of the vaccines, the fact that we have drugs” that should help keep people out of hospitals. Heart and stroke patients need to be extra careful right now, but “as frustrating as it is, we will not be in this situation forever. We really won’t.”

Editor’s note: Because of the rapidly evolving events surrounding the coronavirus, the facts and advice presented in this story may have changed since publication. Visit Heart.org for the latest coverage, and check with the Centers for Disease Control and Prevention and local health officials for the most recent guidance.

If you have questions or comments about this story, please email editor@heart.org.

CDC Says Moderna’s Covid-19 Vaccine Poses Greater Heart Inflammation Risk Than Pfizer

Authors: im Hoft Published June 14, 2022  Gateway Pundit

Moderna’s COVID-19 vaccine may have a higher risk of heart inflammation than the Pfizer shot based on recent data, the U.S. Centers for Disease Control and Prevention said on Tuesday.

On Tuesday, the U.S. Food and Drug Administration met with its Vaccines and Related Biological Products Advisory Committee (VRBPAC) to discuss Moderna’s EUA request for a COVID-19 vaccine for children 6 through 17 years of age.

The same expert panel will meet again on Wednesday to discuss shots from Moderna and Pfizer for the kids under 5.

According to the CDC data, the incidence of heart inflammation was 4.41 excess per 100,000 who received the Pfizer/BioNTech for males aged 18-39 versus 6.27 excess cases per 100,000 for Moderna, Reuters reported.

The overall incidence is relatively rare and the vast majority who suffer the side effect fully recover, but a comparison showed the risk of myocarditis and pericarditis in young males aged 18-39 was 1.1 to 1.5 times higher after the Moderna shot, the FDA said in its presentation, citing data from three U.S. vaccine safety databases.

Some countries in Europe have limited use of Moderna’s vaccine for younger age groups after surveillance suggested it was tied to a higher risk of heart inflammation, and the FDA delayed its review of the Moderna shot to assess the myocarditis risk.

The FDA said data from European and Canadian regulators showed that the risk was 1.7 to 7.3 times higher for Moderna’s vaccine than Pfizer’s in adolescents and young men.

Outside experts are considering the data before deciding whether to recommend Moderna’s vaccine for children and teens aged 6-17 years of age. The Pfizer vaccine is already authorized for children 5 and older.

An FDA official claimed that the findings on myocarditis and pericarditis linked to both the mRNA shots “were not consistent across all of the U.S. vaccine safety monitoring systems.”

The CDC also claimed that recent data suggests that most people with myocarditis after mRNA COVID-19 vaccination recover over time.

Daniel Horowitz, the senior editor at The Blaze, tweeted on Monday regarding the side effects of the Moderna vaccine.

“Holy Moly! one-quarter of the kids in Moderna’s trial reported Grade 3 side effects, meaning they couldn’t go to school https://fda.gov/media/159189/download… So many had flu-like symptoms! Even the original strain of covid mainly did this to kids. Yet, we are giving them these symptoms upfront,” Horowitz tweeted.

Robert F. Kennedy also weighed in and said, “FDA’s risk-benefit document in connection with the Moderna mRNA shot in kids is dishonest, and evidence that the public health establishment has abandoned science, logic, reason, rationality, empathy, health and medicine.”

Moderna’s vaccine efficacy was 36.8% at ages 2-5 years during for omicron

The headline : “Briefing data… also support Moderna’s vaccine for kids up to age 17” is challenging, as an understatement.

The Food and Drug Administration previously said on Friday night that Moderna’s coronavirus vaccine for children under 6 is effective in preventing symptomatic infection without causing worrisome side effects.

Despite all the evidence and data showing the risks of myocarditis and pericarditis, FDA advisers consider Moderna’s COVID shots for children 6 through 17 years of age.

The FDA held up Moderna’s teen vaccine for months while it investigated a rare side effect, heart inflammation. That’s mostly a risk for teen boys and young men, and also can occur with the Pfizer vaccine. Moderna got extra scrutiny because its shots are a far higher dose..

In their review, FDA scientists said there were no confirmed cases of the heart inflammation in Moderna’s kid studies. But experts say the studies may have had too few participants for a rare side effect like that to appear.

“It’s just not enough people in the clinical trials to detect” the problem if it’s occurring, said Dr. Jesse Goodman of Georgetown University, a former FDA vaccine chief, in a call with reporters earlier this week.

The FDA analysis concluded that two doses of Moderna are effective in preventing symptomatic COVID-19 illness in teens and younger kids, with the levels of virus-fighting antibodies comparable to those developed in young adults.

Vaccine effectiveness was estimated at 93% for the 12-17 group, and 77% for the younger group. However, the research was done when earlier versions of the coronavirus were causing most U.S. infections, and it’s not clear how well they work against more recent variants.

The FDA review said it was likely a booster shot would be needed, as is now recommended for children vaccinated with Pfizer’s shots, as well as for all adults.

If the FDA authorizes Moderna shots for teens and schoolchildren, the matter moves next to the CDC, which makes recommendations about vaccinations to doctors and the public. A CDC spokesperson said the agency is not expected to take up the question until later this month.

New study links COVID vaccines to 25% increase in cardiac arrest for both males & females

Study based on data from emergency services. COVID infection itself not linked to significant increase in cardiovascular complications.

Authors: Y Rabinovit 31.05.22 16:20 Israeli National News From Study in Nature

A new study by Israeli researchers and published in Nature has revealed an increase of over 25 percent in cardiovascular-related emergency calls in the young-adult population, following the rollout of COVID vaccines, among both males and females. No similar increase was found due to COVID infection alone.

Israel health authorities and the U.S. Centers of Disease Control (CDC) have acknowledged a link between COVID vaccines and specific cardiovascular complications. The risk of myocarditis after receiving a second vaccine dose is now estimated to be between 1 in 3000 to 1 in 6000 in men aged 16 to 24.

Recent articles in scientific journals, however, have sought to suggest that cardiovascular complications following COVID infection are more common than those following vaccination. This assertion is contradicted by the findings from a recent study conducted by Israeli researchers, using data from Israel National Emergency Medical Services (EMS) related to “cardiac arrest and acute coronary syndrome EMS calls in the 16–39-year-old population” between 2019 and 2021. This enabled them to compare baseline (pre-COVID epidemic) to COVID epidemic without vaccines, to COVID epidemic following widespread vaccine takeup.

An increase of over 25% was detected in both call types during January–May 2021, compared with the years 2019–2020. That is to say, “increased rates of vaccination … are associated with increased number of CA [cardiac arrest] and ACS [acute coronary syndrome].” By contrast, the trial “did not detect a statistically significant association between the COVID-19 infection rates and the CA and ACS weekly call counts.”

While the dangers of myocarditis for young males have gained widespread attention, this study found a larger increase in CA and ACS events among females that was linked to COVID vaccination.

Myocarditis is known to be a “major cause of sudden, unexpected deaths in adults less than 40 years of age and is assessed to be responsible for 12–20% of these deaths,” the study’s authors note. They add that their findings have been mirrored by researchers in Germany and Scotland.

They caution that given these findings, “It is essential to raise awareness among patients and clinicians with respect to related symptoms (e.g., chest discomfort and shortness of breath) following vaccination or COVID-19 infection to ensure that potential harm is minimized.”

Vaccinated Up to 15X MORE LIKELY Than Unvaxxed to Develop Heart Inflammation Requiring Hospitalization: Peer Reviewed Study

Authors:  Julian Conradson Published April 25, 2022 at 4:14pm

A new study out of Europe has revealed that cases of heart inflammation that required hospitalization were much more common among vaccinated individuals compared to the unvaccinated.

A team of researchers from health agencies in Finland, Denmark, Sweden, and Norway found that rates of myocarditis and pericarditis, two forms of potentially life-threatening heart inflammation, were higher in those who had received one or two doses of either mRNA-based vaccine – Pfizer’s or Moderna’s.

In all, researchers studied a total of 23.1 million records on individuals aged 12 or older between December 2020 and October 2021. In addition to the increased rate overall, the massive study confirmed the chances of developing the heart condition increased with a second dose, which mirrors other data that has been uncovered in recent months.

From the *peer-reviewed study, which was published by the Journal of the American Medical Association (JAMA):

“Results of this large cohort study indicated that both first and second doses of mRNA vaccines were associated with increased risk of myocarditis and pericarditis. For individuals receiving 2 doses of the same vaccine, risk of myocarditis was highest among young males (aged 16-24 years) after the second dose. These findings are compatible with between 4 and 7 excess events in 28 days per 100 000 vaccinees after BNT162b2, and between 9 and 28 excess events per 100 000 vaccinees after mRNA-1273.

The risks of myocarditis and pericarditis were highest within the first 7 days of being vaccinated, were increased for all combinations of mRNA vaccines, and were more pronounced after the second dose.”

Also mirroring other data, the study confirmed that young people, especially young males, are the ones who are suffering the worst effects of the experimental jab. Young men, aged 16-24 were an astounding 5-15X more likely to be hospitalized with heart inflammation than their unvaccinated peers.

But it isn’t just young men, all age groups across both sexes – except for men over 40 and girls aged 12-15 – experienced a higher rate of heart inflammation post-vaccination when compared to the unvaxxed.

From The Epoch Times, who spoke with one of the study’s main researchers, Dr. Rickard Ljung:

“‘These extra cases among men aged 16–24 correspond to a 5 times increased risk after Comirnaty and 15 times increased risk after Spikevax compared to unvaccinated,’ Dr. Rickard Ljung, a professor and physician at the Swedish Medical Products Agency and one of the principal investigators of the study, told The Epoch Times in an email.

Comirnaty is the brand name for Pfizer’s vaccine while Spikevax is the brand name for Moderna’s jab.

Rates were also higher among the age group for those who received any dose of the Pfizer or Moderna vaccines, both of which utilize mRNA technology. And rates were elevated among vaccinated males of all ages after the first or second dose, except for the first dose of Moderna’s shot for those 40 or older, and females 12- to 15-years-old.”

Although the peer-reviewed study found a direct link between mRNA based vaccines and increased incident rate of heart inflammation, the researchers claimed that the “benefits” of the experimental vaccines still “outweigh the risks of side effects,” because cases of heart inflammation are “very rare,” in a press conference about their findings earlier this month.

However, while overall case numbers may be low in comparison to the raw numbers and thus technically “very rare,” the rate at which individuals are developing this serious condition has increased by a whopping amount. When considering the fact that 5-15X more, otherwise healthy, young men will come down with the condition – especially since the chances of Covid-19 killing them at that age are effectively zero (99.995% recovery rate) – it’s downright criminal for governments across the world to continue pushing mass vaccinations for everyone.

Dr. Peter McCullough, a world-renowned Cardiologist who has been warning about the long-term horror show that is vaccine-induced myocarditis in young people, certainly thinks so. In his expert opinion, the study does anything but give confidence that the benefits of the vaccine outweigh the risks. In “no way” is that the case, he says. Actually, it’s quite the opposite.

From McCullough, via The Epoch Times:

“In cardiology we spend our entire career trying to save every bit of heart muscle. We put in stents, we do heart catheterization, we do stress tests, we do CT angiograms. The whole game of cardiology is to preserve heart muscle. Under no circumstances would we accept a vaccine that causes even one person to stay sustain heart damage. Not one. And this idea that ‘oh, we’re going to ask a large number of people to sustain heart damage for some other theoretical benefit for a viral infection,’ which for most is less than a common cold, is untenable. The benefits of the vaccines in no way outweigh the risks.”

It’s also worth pointing out that the new study’s findings could be an indicator as to what is driving the massive spike in the excess death rates in the United States and across the world. Correlating exactly with the rollout of the experimental mRNA Covid-19 vaccines, people have been dying at record-breaking rates, especially millennials, who experienced a jaw-dropping 84% increase in excess deaths (compared to pre-pandemic) in the final four months of 2021.

With all the data that has been made available up to this point, there is no denying that the vaccine is at least partially to blame for the spike in severe illness and death, if not entirely. Nevertheless, the CDC, Fauci, Biden, and the rest of the corrupt establishment continue to push mass vaccines, just approved another booster jab (with plans for another already in the works), and are licking their chops to unleash another round of Covid hysteria and crippling restrictions come this fall.

Heart-disease risk soars after COVID — even with a mild case

Authors: Saima May Sidik 10 February 2022


Massive study shows a long-term, substantial rise in risk of cardiovascular disease, including heart attack and stroke, after a SARS-CoV-2 infection.

Even a mild case of COVID-19 can increase a person’s risk of cardiovascular problems for at least a year after diagnosis, a new study1 shows. Researchers found that rates of many conditions, such as heart failure and stroke, were substantially higher in people who had recovered from COVID-19 than in similar people who hadn’t had the disease.

What’s more, the risk was elevated even for those who were under 65 years of age and lacked risk factors, such as obesity or diabetes.

“It doesn’t matter if you are young or old, it doesn’t matter if you smoked, or you didn’t,” says study co-author Ziyad Al-Aly at Washington University in St. Louis, Missouri, and the chief of research and development for the Veterans Affairs (VA) St. Louis Health Care System. “The risk was there.”

Al-Aly and his colleagues based their research on an extensive health-record database curated by the United States Department of Veterans Affairs. The researchers compared more than 150,000 veterans who survived for at least 30 days after contracting COVID-19 with two groups of uninfected people: a group of more than five million people who used the VA medical system during the pandemic, and a similarly sized group that used the system in 2017, before SARS-CoV-2 was circulating.

Troubled hearts

People who had recovered from COVID-19 showed stark increases in 20 cardiovascular problems over the year after infection. For example, they were 52% more likely to have had a stroke than the contemporary control group, meaning that, out of every 1,000 people studied, there were around 4 more people in the COVID-19 group than in the control group who experienced stroke.

The risk of heart failure increased by 72%, or around 12 more people in the COVID-19 group per 1,000 studied. Hospitalization increased the likelihood of future cardiovascular complications, but even people who avoided hospitalization were at higher risk for many conditions.

“I am actually surprised by these findings that cardiovascular complications of COVID can last so long,” Hossein Ardehali, a cardiologist at Northwestern University in Chicago, Illinois, wrote in an e-mail to Nature. Because severe disease increased the risk of complications much more than mild disease, Ardehali wrote, “it is important that those who are not vaccinated get their vaccine immediately”.COVID’s cardiac connection

Ardehali cautions that the study’s observational nature comes with some limitations. For example, people in the contemporary control group weren’t tested for COVID-19, so it’s possible that some of them actually had mild infections. And because the authors considered only VA patients — a group that’s predominantly white and male — their results might not translate to all populations.

Ardehali and Al-Aly agree that health-care providers around the world should be prepared to address an increase in cardiovascular conditions. But with high COVID-19 case counts still straining medical resources, Al-Aly worries that health authorities will delay preparing for the pandemic’s aftermath for too long. “We collectively dropped the ball on COVID,” he said. “And I feel we’re about to drop the ball on long COVID.”

doi: https://doi.org/10.1038/d41586-022-00403-0


  1. Xie, Y., Xu, E., Bowe, B. & Al-Aly, Z. Nature Med. https://www.nature.com/articles/s41591-022-01689-3 (2022).PubMed Article Google Scholar 

Long-term cardiovascular outcomes of COVID-19


The cardiovascular complications of acute coronavirus disease 2019 (COVID-19) are well described, but the post-acute cardiovascular manifestations of COVID-19 have not yet been comprehensively characterized. Here we used national healthcare databases from the US Department of Veterans Affairs to build a cohort of 153,760 individuals with COVID-19, as well as two sets of control cohorts with 5,637,647 (contemporary controls) and 5,859,411 (historical controls) individuals, to estimate risks and 1-year burdens of a set of pre-specified incident cardiovascular outcomes. We show that, beyond the first 30 d after infection, individuals with COVID-19 are at increased risk of incident cardiovascular disease spanning several categories, including cerebrovascular disorders, dysrhythmias, ischemic and non-ischemic heart disease, pericarditis, myocarditis, heart failure and thromboembolic disease. These risks and burdens were evident even among individuals who were not hospitalized during the acute phase of the infection and increased in a graded fashion according to the care setting during the acute phase (non-hospitalized, hospitalized and admitted to intensive care). Our results provide evidence that the risk and 1-year burden of cardiovascular disease in survivors of acute COVID-19 are substantial. Care pathways of those surviving the acute episode of COVID-19 should include attention to cardiovascular health and disease.


Post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)—the virus that causes coronavirus disease 2019 (COVID-19)—can involve the pulmonary and several extrapulmonary organs, including the cardiovascular system1. A few studies have investigated cardiovascular outcomes in the post-acute phase of the COVID-19; however, most were limited to hospitalized individuals (who represent the minority of people with COVID-19), and all had a short duration of follow-up and a narrow selection of cardiovascular outcomes2,3,4,5. A comprehensive assessment of post-acute COVID-19 sequelae of the cardiovascular system at 12 months is not yet available, and studies of post-acute COVID-19 sequelae across the spectrum of care settings of the acute infection (non-hospitalized, hospitalized and admitted to intensive care) are also lacking. Addressing this knowledge gap will inform post-acute COVID-19 care strategies.

In this study, we used the US Department of Veterans Affairs national healthcare databases to build a cohort of 153,760 US veterans who survived the first 30 d of COVID-19 and two control groups: a contemporary cohort consisting of 5,637,647 users of the US Veterans Health Administration (VHA) system with no evidence of SARS-CoV-2 infection and a historical cohort (pre-dating the COVID-19 pandemic) consisting of 5,859,411 non-COVID-19-infected VHA users during 2017. These cohorts were followed longitudinally to estimate the risks and 12-month burdens of pre-specified incident cardiovascular outcomes in the overall cohort and according to care setting of the acute infection (non-hospitalized, hospitalized and admitted to intensive care).


There were 153,760, 5,637,647 and 5,859,411 participants in the COVID-19, contemporary control and historical control groups, respectively (Fig. 1). Median follow-up time in the COVID-19, contemporary control and historical control groups was 347 (interquartile range, 317–440), 348 (318–441) and 347 (317–440) d, respectively. The COVID-19, contemporary control and historical control groups had 159,366, 5,854,288 and 6,082,182 person-years of follow-up, respectively, altogether corresponding to 12,095,836 person-years of follow-up. The demographic and health characteristics of the COVID-19, contemporary control and historical control groups before and after weighting are presented in Supplementary Tables 1 and 2, respectively.

figure 1
Fig. 1: Flowchart of cohort construction.

Incident cardiovascular diseases in COVID-19 versus contemporary control

Assessment of covariate balance after application of inverse probability weighting suggested that covariates were well balanced (Extended Data Fig. 1a).

We estimated the risks of a set of pre-specified cardiovascular outcomes in COVID-19 versus contemporary control; we also estimated the adjusted excess burden of cardiovascular outcomes due to COVID-19 per 1,000 persons at 12 months on the basis of the difference between the estimated incidence rate in individuals with COVID-19 and the contemporary control group. Risks and burdens of individual cardiovascular outcomes are provided in Fig. 2 and Supplementary Table 3 and are discussed below. Risks and burdens of the composite endpoints are provided in Fig. 3 and Supplementary Table 3.

figure 2
Fig. 2: Risks and 12-month burdens of incident post-acute COVID-19 cardiovascular outcomes compared with the contemporary control cohort.
figure 3
Fig. 3: Risks and 12-month burdens of incident post-acute COVID-19 composite cardiovascular outcomes compared with the contemporary control cohort.

Cerebrovascular disorders

People who survived the first 30 d of COVID-19 exhibited increased risk of stroke (hazard ratio (HR) = 1.52 (1.43, 1.62); burden 4.03 (3.32, 4.79) per 10,00 persons at 12 months; for all HRs and burdens, parenthetical ranges refer to 95% confidence intervals (CIs)) and transient ischemic attacks (TIA) (HR = 1.49 (1.37, 1.62); burden 1.84 (1.38, 2.34)). The risks and burdens of a composite of these cerebrovascular outcomes were 1.53 (1.45, 1.61) and 5.48 (4.65, 6.35).


There were increased risks of atrial fibrillation (HR = 1.71 (1.64, 1.79); burden 10.74 (9.61, 11.91)), sinus tachycardia (HR = 1.84 (1.74, 1.95); burden 5.78 (5.07, 6.53)), sinus bradycardia (HR = 1.53 (1.45, 1.62); burden 4.62 (3.90, 5.38)), ventricular arrhythmias (HR = 1.84 (1.72, 1.98); burden 4.18 (3.56, 4.85)); and atrial flutter (HR = 1.80 (1.66, 1.96); burden 3.10 (2.55, 3.69)). The risks and burdens of a composite of these dysrhythmia outcomes were 1.69 (1.64, 1.75), and 19.86 (18.31, 21.46).

Inflammatory disease of the heart or pericardium

Inflammatory disease of the heart or pericardium included pericarditis (HR = 1.85 (1.61, 2.13)); burden 0.98 (0.70, 1.30) and myocarditis (HR = 5.38 (3.80, 7.59); burden 0.31 (0.20, 0.46)). The risks and burdens of a composite of these inflammatory diseases of the heart or pericardium were 2.02 (1.77, 2.30) and 1.23 (0.93, 1.57).

Ischemic heart disease

Ischemic heart disease included acute coronary disease (HR = 1.72 (1.56, 1.90); burden 5.35 (4.13, 6.70)), myocardial infarction (HR = 1.63 (1.51, 1.75); burden 2.91 (2.38, 3.49)), ischemic cardiomyopathy (HR = 1.75 (1.44, 2.13); burden 2.34 (1.37, 3.51)) and angina (HR = 1.52 (1.42, 1.64); burden 2.50 (2.00, 3.03)). The risks and burdens of a composite of these ischemic heart disease outcomes were 1.66 (1.52, 1.80) and 7.28 (5.80, 8.88).

Other cardiovascular disorders

Other cardiovascular disorders included heart failure (HR = 1.72 (1.65, 1.80); burden 11.61 (10.47, 12.78)), non-ischemic cardiomyopathy (HR = 1.62 (1.52, 1.73); burden 3.56 (2.97, 4.20)), cardiac arrest (HR = 2.45 (2.08, 2.89); burden 0.71 (0.53, 0.93)) and cardiogenic shock (HR = 2.43 (1.86, 3.16); burden 0.51 (0.31, 0.77)). The risks and burdens of a composite of these other cardiovascular disorders were 1.72 (1.65, 1.79) and 12.72 (11.54, 13.96).

Thromboembolic disorders

Thromboembolic disorders included pulmonary embolism (HR = 2.93 (2.73, 3.15); burden 5.47 (4.90, 6.08)); deep vein thrombosis (HR = 2.09 (1.94, 2.24); burden 4.18 (3.62, 4.79)) and superficial vein thrombosis (HR = 1.95 (1.80, 2.12); burden 2.61 (2.20, 3.07)). The risks and burdens of a composite of these thromboembolic disorders were 2.39 (2.27, 2.51) and 9.88 (9.05, 10.74).

Additional composite endpoints

We then examined the risks and burdens of two composite endpoints, including major adverse cardiovascular event (MACE)—a composite of myocardial infarction, stroke and all-cause mortality—and any cardiovascular outcome (defined as the occurrence of any incident pre-specified cardiovascular outcome included in this study). Compared to the contemporary control group, there were increased risks and burdens of MACE (HR = 1.55 (1.50, 1.60); burden 23.48 (21.54, 25.48)) and any cardiovascular outcome (HR = 1.63 (1.59, 1.68); burden 45.29 (42.22, 48.45)).

Subgroup analyses

We examined the risks of incident composite cardiovascular outcomes in subgroups based on age, race, sex, obesity, smoking, hypertension, diabetes, chronic kidney disease, hyperlipidemia and cardiovascular disease. The risks of incident composite cardiovascular outcomes were evident in all subgroups (Fig. 4 and Supplementary Table 4),

figure 4
Fig. 4: Subgroup analyses of the risks of incident post-acute COVID-19 composite cardiovascular outcomes compared with the contemporary control cohort.

We examined the risks and burdens of the pre-specified outcomes in a cohort of people without any cardiovascular disease at baseline; the results were consistent with those shown in the primary analyses (Extended Data Figs. 2 and 3 and Supplementary Table 5).

Incident cardiovascular diseases in COVID-19 versus contemporary control by care setting of the acute infection

We further examined the risks and burdens of cardiovascular diseases in mutually exclusive groups by the care setting of the acute infection (that is, whether people were non-hospitalized (n = 131,612), hospitalized (n = 16,760) or admitted to intensive care (n = 5,388) during the acute phase of COVID-19); demographic and health characteristics of these groups before weighting can be found in Supplementary Table 6 and after weighting in Supplementary Table 7. Assessment of covariate balance after application of weights suggested that covariates were well balanced (Extended Data Fig. 1b). Compared to the contemporary control group, the risks and 12-month burdens of the pre-specified cardiovascular outcomes increased according to the severity of the acute infection (Fig. 5 and Supplementary Table 8); results for the composite outcomes are shown in Fig. 6 and Supplementary Table 8.

figure 5
Fig. 5: Risks and 12-month burdens of incident post-acute COVID-19 cardiovascular outcomes compared with the contemporary control cohort by care setting of the acute infection.
figure 6
Fig. 6: Risks and 12-month burdens of incident post-acute COVID-19 composite cardiovascular outcomes compared with the contemporary control cohort by care setting of the acute infection.

Incident cardiovascular diseases in COVID-19 versus historical control

We then examined the associations between COVID-19 and the pre-specified outcomes in analyses considering a historical control group as the referent category; the characteristics of the exposure groups were balanced after weighting (Extended Data Fig. 1c and Supplementary Table 2). The results were consistent with analyses using the contemporary control as the referent category and showed increased risks and associated burdens of the pre-specified outcomes in comparisons of COVID-19 versus the overall historical control group (Extended Data Figs. 4 and 5 and Supplementary Table 9). Using the historical control as the referent category, we examined the risks in subgroups and separately in people without any prior cardiovascular disease; the results were consistent with those undertaken versus the contemporary control (Extended Data Figs. 68 and Supplementary Tables 10 and 11). Associations between COVID-19 and our pre-specified outcomes based on care setting of the acute infection were also assessed using the historical control group as the referent category; demographic and clinical characteristics are presented before weighting in Supplementary Table 12 and after weighting in Supplementary Table 13. Characteristics of the exposure groups were balanced after weighting (Extended Data Fig. 1d). The risks and 12-month burdens of the pre-specified outcomes by care setting of the acute infection were also consistent with those shown in analyses considering COVID-19 versus contemporary control (Extended Data Figs. 9 and 10 and Supplementary Table 14).

Cardiovascular diseases before and after COVID-19

To better understand the change in the relative rates of incident cardiovascular outcomes before and after the COVID-19 exposure, we developed a difference-in-differences analysis to estimate the adjusted incident rate ratios of the cardiovascular outcomes relative to both the contemporary and historical control groups in the pre-COVID-19 and post-COVID-19 exposure periods. The results showed that the adjusted incident rate ratios of cardiovascular outcomes in the post-COVID-19 exposure period were significantly higher than those in the pre-exposure period (ratios of incident rate ratios for all cardiovascular outcomes were significantly higher than 1) and exhibited a graded increase by severity of the acute phase of the disease (Supplementary Tables 1518).

Sensitivity analyses

We tested robustness of results in several sensitivity analyses involving the outcomes of MACE and any cardiovascular outcome (Supplementary Tables 17 and 18). The sensitivity analyses were performed in comparisons involving COVID-19 versus the contemporary control and COVID-19 versus the historical control and, additionally, COVID-19 by care setting versus both controls. (1) To test whether the inclusion of additional algorithmically selected covariates would challenge the robustness of study results, we selected and used 300 high-dimensional variables (instead of the 100 used in the primary analyses) to construct the inverse probability weighting. (2) We then also tested the results in models specified to include only pre-defined covariates (that is, without inclusion of algorithmically selected covariates) to build the inverse probability weighting. Finally, (3) we changed the analytic approach by using the doubly robust method (instead of the inverse weighting method used in primary analyses) to estimate the magnitude of the associations between COVID-19 exposure and the pre-specified outcomes. All sensitivity analyses yielded results consistent with those produced using the primary approach (Supplementary Tables 19 and 20).

Risk of myocarditis and pericarditis without COVID-19 vaccination

Because some COVID-19 vaccines might be associated with a very rare risk of myocarditis or pericarditis, and to eliminate any putative contribution of potential vaccine exposure to the outcomes of myocarditis and pericarditis in this study, we conducted two analyses. First, we censored cohort participants at the time of receiving the first dose of any COVID-19 vaccine. Second, we adjusted for vaccination as a time-varying covariate. Both analyses were conducted versus both the contemporary and historical control groups. The results suggested that COVID-19 was associated with increased risk of myocarditis and pericarditis in both analyses (Supplementary Tables 2124).

Positive and negative outcome controls

To assess whether our data and analytic approach would reproduce known associations, we examined the association between COVID-19 and the risk of fatigue (known to be a signature sequela of post-acute COVID-19) as a positive outcome control. The results suggested that COVID-19 was associated with a higher risk of fatigue (Supplementary Table 25).

We then examined the association between COVID-19 and a battery of seven negative-outcome controls where no prior knowledge suggests that an association is expected. The results yielded no significant association between COVID-19 and any of the negative-outcome controls, which were consistent with a priori expectations (Supplementary Table 25).

Negative-exposure controls

To further examine the robustness of our approach, we developed and tested a pair of negative-exposure controls. We hypothesized that receipt of influenza vaccination in odd-numbered and even-numbered calendar days between 1 March 2020 and 15 January 2021 would be associated with similar risks of the pre-specified cardiovascular outcomes examined in this analysis. We, therefore, tested the associations between receipt of influenza vaccine in even-numbered (n = 571,291) versus odd-numbered (n = 605,453) calendar days and the pre-specified cardiovascular outcomes. We used the same data sources, cohort design, analytical approach (including covariate specification and weighting method) and outcomes. The results suggest that receipt of influenza vaccination in odd-numbered calendar days versus even-numbered calendar days was not significantly associated with any of the pre-specified cardiovascular outcomes (Supplementary Table 26).


In this study involving 153,760 people with COVID-19, 5,637,647 contemporary controls and 5,859,411 historical controls—which, altogether, correspond to 12,095,836 person-years of follow-up—we provide evidence that, beyond the first 30 d of infection, people with COVID-19 exhibited increased risks and 12-month burdens of incident cardiovascular diseases, including cerebrovascular disorders, dysrhythmias, inflammatory heart disease, ischemic heart disease, heart failure, thromboembolic disease and other cardiac disorders. The risks were evident regardless of age, race, sex and other cardiovascular risk factors, including obesity, hypertension, diabetes, chronic kidney disease and hyperlipidemia; they were also evident in people without any cardiovascular disease before exposure to COVID-19, providing evidence that these risks might manifest even in people at low risk of cardiovascular disease. Our analyses of the risks and burdens of cardiovascular outcomes across care settings of the acute infection reveal two key findings: (1) that the risks and associated burdens were evident among those who were not hospitalized during the acute phase of the disease—this group represents the majority of people with COVID-19; and (2) that the risks and associated burdens exhibited a graded increase across the severity spectrum of the acute phase of COVID-19 (from non-hospitalized to hospitalized individuals to those admitted to intensive care). The risks and associated burdens were consistent in analyses considering the contemporary control group and, separately, the historical control group as the referent category. The difference-in-differences analyses, which are designed to further investigate the causality of study findings, show that the increased risks of post-acute COVID-19 cardiovascular outcomes are attributable sequelae to COVID-19 itself. The results were robust to challenge in multiple sensitivity analyses. Application of a positive-outcome control yielded results consistent with established knowledge; and testing of a battery of negative-outcome controls and negative-exposure controls yielded results consistent with a priori expectations. Taken together, our results show that 1-year risks and burdens of cardiovascular diseases among those who survive the acute phase of COVID-19 are substantial and span several cardiovascular disorders. Care strategies of people who survived the acute episode of COVID-19 should include attention to cardiovascular health and disease.

The broader implications of these findings are clear. Cardiovascular complications have been described in the acute phase of COVID-19 (refs. 6,7,8). Our study shows that the risk of incident cardiovascular disease extends well beyond the acute phase of COVID-19. First, the findings emphasize the need for continued optimization of strategies for primary prevention of SARS-CoV-2 infections; that is, the best way to prevent Long COVID and its myriad complications, including the risk of serious cardiovascular sequelae, is to prevent SARS-CoV-2 infection in the first place. Second, given the large and growing number of people with COVID-19 (more than 72 million people in the United States, more than 16 million people in the United Kingdom and more than 355 million people globally), the risks and 12-month burdens of cardiovascular diseases reported here might translate into a large number of potentially affected people around the world. Governments and health systems around the world should be prepared to deal with the likely significant contribution of the COVID-19 pandemic to a rise in the burden of cardiovascular diseases. Because of the chronic nature of these conditions, they will likely have long-lasting consequences for patients and health systems and also have broad implications on economic productivity and life expectancy. Addressing the challenges posed by Long COVID will require a much-needed, but so far lacking, urgent and coordinated long-term global response strategy9,10.

The mechanism or mechanisms that underlie the association between COVID-19 and development of cardiovascular diseases in the post-acute phase of the disease are not entirely clear11,12. Putative mechanisms include lingering damage from direct viral invasion of cardiomyocytes and subsequent cell death, endothelial cell infection and endotheliitis, transcriptional alteration of multiple cell types in heart tissue, complement activation and complement-mediated coagulopathy and microangiopathy, downregulation of ACE2 and dysregulation of the renin–angiotensin–aldosterone system, autonomic dysfunction, elevated levels of pro-inflammatory cytokines and activation of TGF-β signaling through the Smad pathway to induce subsequent fibrosis and scarring of cardiac tissue11,13,14,15,16,17. An aberrant persistent hyperactivated immune response, autoimmunity or persistence of the virus in immune-privileged sites has also been cited as putative explanations of extrapulmonary (including cardiovascular) post-acute sequelae of COVID-19 (refs. 11,13,14,18). Integration of the SARS-CoV-2 genome into DNA of infected human cells, which might then be expressed as chimeric transcripts fusing viral with cellular sequences, has also been hypothesized as a putative mechanism for continued activation of the immune-inflammatory-procoagulant cascade19,20. These mechanistic pathways might explain the range of post-acute COVID-19 cardiovascular sequelae investigated in this report. A deeper understanding of the biologic mechanisms will be needed to inform development of prevention and treatment strategies of the cardiovascular manifestations among people with COVID-19.

Our analyses censoring participants at time of vaccination and controlling for vaccination as a time-varying covariate show that the increased risk of myocarditis and pericarditis reported in this study is significant in people who were not vaccinated and is evident regardless of vaccination status.

This study has several strengths. We used the vast and rich national healthcare databases of the US Department of Veterans Affairs to build a large cohort of people with COVID-19. We designed the study cohort to investigate incident cardiovascular disease in the post-acute phase of the disease. We pre-specified a comprehensive list of cardiovascular outcomes. We examined the associations using two large control groups: a contemporary and a historical control; this approach allowed us to deduce that the associations between COVID-19 and risks of cardiovascular outcomes are not related to the broader temporal changes between the pre-pandemic and the pandemic eras but, rather, are related to exposure to COVID-19 itself. Our modeling approach included specification of 19 pre-defined variables selected based on established knowledge and 100 algorithmically selected variables from high-dimensional data domains, including diagnostic codes, prescription records and laboratory test results. We evaluated the associations across care settings of the acute infection. Our difference-in-differences approach further enhances the causal interpretation of study results. We challenged the robustness of results in multiple sensitivity analyses and successfully tested positive-outcome and negative-outcome controls and negative-exposure controls. We provided estimates of risk on both the ratio scale (HRs) and the absolute scale (burden per 1,000 persons at 12 months); the latter also reflects the contribution of baseline risk and provides an estimate of potential harm that is more easily explainable to the public than risk reported on the ratio scale (for example, HR).

This study has several limitations. The demographic composition of our cohort (majority White and male) might limit the generalizability of study findings. We used the electronic healthcare databases of the US Department of Veterans Affairs to conduct this study, and, although we used validated outcome definitions and took care to adjust the analyses for a large set of pre-defined and algorithmically selected variables, we cannot completely rule out misclassification bias and residual confounding. It is possible that some people might have had COVID-19 but were not tested for it; these people would have been enrolled in the control group and, if present in large numbers, might have biased the results toward the null. Our datasets do not include information on causes of death. Finally, as the pandemic, with all its dynamic features, continues to progress, as the virus continues to mutate and as new variants emerge, as treatment strategies of acute and post-acute COVID-19 evolve and as vaccine uptake improves, it is possible that the epidemiology of cardiovascular manifestations in COVID-19 might also change over time21.

In summary, using a national cohort of people with COVID-19, we show that risk and 12-month burden of incident cardiovascular disease are substantial and span several cardiovascular disease categories (ischemic and non-ischemic heart disease, dysrhythmias and others). The risks and burdens of cardiovascular disease were evident even among those whose acute COVID-19 did not necessitate hospitalization. Care pathways of people who survived the acute episode of COVID-19 should include attention to cardiovascular health and disease.



We used the electronic healthcare databases of the US Department of Veterans Affairs to conduct this study. The VHA, within the US Department of Veterans Affairs, provides healthcare to discharged veterans of the US armed forces. It operates the largest nationally integrated healthcare system in the United States, with 1,255 healthcare facilities (including 170 VA Medical Centers and 1,074 outpatient sites) located across the United States. All veterans who are enrolled with the VHA have access to the comprehensive medical benefits package of the VA (which includes preventative and health maintenance, outpatient care, inpatient hospital care, prescriptions, mental healthcare, home healthcare, primary care, specialty care, geriatric and extended care, medical equipment and prosthetics). The VA electronic healthcare databases are updated daily.


A flowchart of cohort construction is provided in Fig. 1. Of 6,241,346 participants who encountered the VHA in 2019, 162,690 participants who had a positive COVID-19 test between 1 March 2020 and 15 January 2021 were selected into the COVID-19 group. To examine post-acute outcomes, we then selected participants from the COVID-19 group who were alive 30 d after the date of the positive COVID-19 test (n = 153,760). The date of the COVID-19-positive test served as T0 for the COVID-19 group.

A contemporary control group of people with no evidence of SARS-CoV-2 infection was constructed from those who had encountered the VHA in 2019 (n = 6,241,346). Of those who were still alive by 1 March 2020 (n = 5,960,737), 5,806,977 participants were not in the COVID-19 group and were selected into the contemporary control group. To ensure that this contemporary control group had a similar follow-up time as the COVID-19 group, we randomly assigned T0 in the contemporary control group based on the distribution of T0 in the COVID-19 group so that the proportion of people enrolled on a certain date would be the same in both the contemporary and COVID-19 groups. Of 5,658,938 participants alive at the assigned T0, 5,637,647 participants in the contemporary control group were alive 30 d after T0. In the COVID-19 and contemporary control groups, 31 October 2021 was the end of follow-up.

To examine the associations between COVID-19 and cardiovascular outcomes compared to those who did not experience the pandemic, a historical control group was constructed from 6,461,205 participants who used the VHA in 2017. Of the 6,150,594 participants who were alive on 1 March 2018, 6,008,499 participants did not enroll into the COVID-19 group and were further selected into the historical control group. To ensure that this historical control group had a similar follow-up time as the COVID-19 group, we randomly assigned T0 in the historical control group with a similar distribution as T0 minus 2 years (730 d) in the COVID-19 group. Of 5,875,818 historical control participants alive at assigned T0, 5,859,411 were alive 30 d after T0. In the historical control group, end of follow-up was set as 31 October 2019.

Data sources

Electronic health records from the VA Corporate Data Warehouse (CDW) were used in this study. Demographic information was collected from the CDW Patient domain. The CDW Outpatient Encounters domain provided clinical information pertaining to outpatient encounters, whereas the CDW Inpatient Encounters domain provided clinical information during hospitalization. Medication information was obtained from the CDW Outpatient Pharmacy and CDW Bar Code Medication Administration domains. The CDW Laboratory Results domain provided laboratory test information, and the COVID-19 Shared Data Resource provided information on COVID-19. Additionally, the Area Deprivation index (ADI), which is a composite measure of income, education, employment and housing, was used as a summary measure of contextual disadvantage at participants’ residential locations22.

Pre-specified outcomes

The pre-specified outcomes were selected based on our previous work on the systematic characterization of Long COVID1,23. Incident cardiovascular outcomes in the post-acute phase of COVID-19 were assessed in the follow-up period between 30 d after T0 until the end of follow-up in those without history of the outcome in the year before T0. Each cardiovascular outcome was defined based on validated diagnostic codes. We also aggregated individual outcomes in a related category of composite outcome (for example, stroke and TIA were aggregated to cerebrovascular disease). We also specified two additional composite outcomes: (1) MACE was a composite outcome of all-cause mortality, myocardial infarction and stroke; and (2) the composite of any cardiovascular outcome was defined as the first incident occurrence of any of the cardiovascular outcomes investigated in this study.


To adjust for the difference in baseline characteristics between groups, we considered both pre-defined and algorithmically selected high-dimensional covariates assessed within 1 year before T0. Pre-defined variables were selected based on prior knowledge1,7,24,25. The pre-defined covariates included age, race (White, Black and Other), sex, ADI, body mass index, smoking status (current, former and never) and healthcare use parameters, including the use number of outpatient and inpatient encounters and use of long-term care. We additionally specified several comorbidities as pre-defined variables, including cancer, chronic kidney disease, chronic lung disease, dementia, diabetes, dysautonomia, hyperlipidemia and hypertension. Additionally, we adjusted for estimated glomerular filtration rate and systolic and diastolic blood pressure. Missing values were accounted for by conditional mean imputation based on value within the group26. Continuous variables were transformed into restricted cubic spline functions to account for potential non-linear relationships.

In addition to pre-defined covariates, we further algorithmically selected additional potential confounders from data domains, including diagnoses, medications and laboratory tests27. To accomplish this, we gathered all patient encounter, prescription and laboratory data and classified the information into 540 diagnostic categories, 543 medication classes and 62 laboratory test abnormalities. For the diagnoses, medications and laboratory abnormalities that occurred in at least 100 participants within each group, univariate relative risk between the variable and exposure was calculated, and the top 100 variables with the strongest relative risk were selected28. The process of algorithmically selecting the high-dimensional covariates was independently conducted for each outcome-specific cohort in each comparison (for example, the COVID-19 versus contemporary control analyses to examine incident heart failure and the COVID-19 versus historical control analyses to examine incident heart failure).

All pre-defined and algorithmically selected covariates were used in the models.

Statistical analyses

Baseline characteristics of the COVID-19 and contemporary and historical control groups, along with standardized mean difference between groups, were described.

We then estimated the risks, burdens and excess burdens of incident cardiovascular outcomes for COVID-19 compared to the contemporary control group and, separately, compared to the historical control group, after adjusting for differences in baseline characteristics through inverse probability weighting. To estimate the risk of each incident cardiovascular outcome, we built a subcohort of participants without a history of the outcome being examined (that is, the risk of incident heart failure was estimated within a subcohort of participants without history of heart failure in the year before enrollment). In each subcohort, a propensity score for each individual was estimated as the probability of belonging to the VHA users group in 2019 (target population) based on both pre-defined and algorithmically selected high-dimensional variables. This propensity score was then used to calculate the inverse probability weight as the probability of belonging in the target population divided by 1 − the probability of being in the target population. Covariate balance after application of weights was assessed by standardized mean differences.

HRs of incident cardiovascular outcomes between the COVID-19 and contemporary cohorts and the COVID-19 and historical cohorts were estimated from cause-specific hazard models where death was considered as a competing risk, and the inverse probability weights were applied. Burden per 1,000 participants at 12 months of follow-up and the excess burden based on the differences between COVID-19 and control groups were estimated.

We conducted analyses in subgroups by age, race, sex, obesity, smoking, hypertension, diabetes, chronic kidney disease, hyperlipidemia and cardiovascular disease. And, separately, we undertook analyses in a cohort without history of any cardiovascular outcomes before cohort enrollment.

We then developed causal difference-in-differences analyses to estimate the adjusted incident rate ratios of all cardiovascular outcomes in the pre-COVID-19 and post-COVID-19 exposure period relative to both contemporary and historical controls29,30,31,32. To enhance the interpretability of difference-in-difference analyses, the pre-exposure period was defined as with same follow-up time as the post-exposure period, and the incident rate ratio for the pre-exposure period was examined within those without history of the outcome within 1 year before the period. Incident rate ratios for all groups in the pre-exposure and post- exposure periods were weighted toward the common target population (VHA users in 2019) based on pre-exposure characteristics. The adjusted incident rate ratios in the pre-exposure and post-exposure periods were then compared. Difference-in-differences analyses were also conducted in mutually exclusive groups according to care setting of the acute phase of the disease. We also evaluated the associations between COVID-19 and risks of post-acute cardiovascular sequelae in mutually exclusive groups according to care setting of the acute phase of the disease (that is, whether people were non-hospitalized, hospitalized or admitted into the intensive care unit during the first 30 d of infection). Inverse probability weights were estimated for each care setting group using the approach outlined in the previous paragraph. Cause-specific hazard models with inverse probability weighting were then applied, and HRs, burdens and excess burdens were reported.

We conducted multiple sensitivity analyses to test the robustness of our study results. (1) To capture additional potential confounders, we expanded our inclusion of high-dimensional variables from the top 100 to the top 300 when constructing the inverse probability weight. (2) We then modified our adjustment strategy by using only pre-defined variables when constructing the inverse probability weight (not including the 100 high-dimensional covariates used in the primary analyses). Finally, (3) we alternatively applied a doubly robust approach, where both covariates and the inverse probability weights were applied to the survival models, to estimate the associations33.

COVID-19 is associated with an increased risk of fatigue in the post-acute phase of the disease, which is generally considered as a signature post-acute sequela34. To test whether our approach would reproduce known associations, we, therefore, examined the association between COVID-19 and fatigue as a positive outcome control. Reproducing this known association (using our data, cohort design and analytic strategy) would provide some measure of assurance that our approach yields result consistent with a priori expectations.

We also subjected our approach to the application of a battery of negative-outcome controls where no prior knowledge supports the existence of a causal association between the exposure and the risks of negative-outcome controls35. The negative-outcome controls included hypertrichosis, melanoma in situ, sickle cell trait, perforation of the tympanic membrane, malignant neoplasm of the tongue, B cell lymphoma and Hodgkin’s lymphoma. We also developed and tested a pair of negative-exposure controls (defined as exposure to influenza vaccine in odd-numbered or even-numbered calendar days between 1 March 2020 and 15 January 2021). Our pre-test expectation was that there would be no differences in risk of any of the pre-specified cardiovascular outcomes examined in this analysis between those who received influenza vaccine in odd-numbered versus even-numbered calendar days. The successful application of negative controls might reduce concern about the presence of spurious biases related to cohort building, study design, covariate selection, analytic approaches, outcome ascertainment, residual confounding and other sources of latent biases.

Estimation of variance when weightings were applied was accomplished by using robust sandwich variance estimators. In all analyses, a 95% confidence interval that excluded unity was considered evidence of statistical significance. This study was approved by the institutional review board of the VA St. Louis Health Care System (protocol number 1606333), which granted a waiver of informed consent. Analyses were conducted using SAS Enterprise Guide version 8.2 (SAS Institute), and results were visualized using R version 4.04.

Ethical approval

This research project was reviewed and approved by the institutional review board of the VA St. Louis Health Care System (protocol number 1606333).

Reporting Summary

Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available from the US Department of Veterans Affairs. VA data are made freely available to researchers behind the VA firewall with an approved VA study protocol. For more information, visit https://www.virec.research.va.gov or contact the VA Information Resource Center at VIReC@va.gov.

Code availability

SAS codes are available at https://github.com/yxie618/longCVD and https://doi.org/10.5281/zenodo.5799457.


  1. 1.Al-Aly, Z., Xie, Y. & Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 594, 259–264 (2021).CAS Article Google Scholar 
  2. 2.Ayoubkhani, D. et al. Post-COVID syndrome in individuals admitted to hospital with COVID-19: retrospective cohort study. BMJ 372, n693 (2021).Article Google Scholar 
  3. 3.Huang, C. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 397, 220−232 (2021).
  4. 4.Carfi, A., Bernabei, R., Landi, F. & the Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA 324, 603–605 (2020).
  5. 5.Daugherty, S. E. et al. Risk of clinical sequelae after the acute phase of SARS-CoV-2 infection: retrospective cohort study. BMJ 373, n1098 (2021).Article Google Scholar 
  6. 6.Katsoularis, I., Fonseca-Rodriguez, O., Farrington, P., Lindmark, K. & Fors Connolly, A. M. Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet 398, 599–607 (2021).CAS Article Google Scholar 
  7. 7.Xie, Y., Bowe, B., Maddukuri, G. & Al-Aly, Z. Comparative evaluation of clinical manifestations and risk of death in patients admitted to hospital with COVID-19 and seasonal influenza: cohort study. BMJ 371, m4677 (2021).Google Scholar 
  8. 8.Gupta, A. et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 26, 1017–1032 (2020).CAS Article Google Scholar 
  9. 9.Alwan, N. A. The road to addressing long COVID. Science 373, 491–493 (2021).CAS Article Google Scholar 
  10. 10.Briggs, A. & Vassall, A. Count the cost of disability caused by COVID-19. Nature 593, 502–505 (2021).CAS Article Google Scholar 
  11. 11.Farshidfar, F., Koleini, N. & Ardehali, H. Cardiovascular complications of COVID-19. JCI Insight 6, e148980 (2021).
  12. 12.Nalbandian, A. et al. Post-acute COVID-19 syndrome. Nat. Med. 27, 601–615 (2021).CAS Article Google Scholar 
  13. 13.Nishiga, M., Wang, D. W., Han, Y., Lewis, D. B. & Wu, J. C. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 17, 543–558 (2020).CAS Article Google Scholar 
  14. 14.Chung, M. K. et al. COVID-19 and cardiovascular disease. Circ. Res. 128, 1214–1236 (2021).CAS Article Google Scholar 
  15. 15.Delorey, T. M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 595, 107–113 (2021).CAS Article Google Scholar 
  16. 16.Song, W.-C. & FitzGerald, G. A. COVID-19, microangiopathy, hemostatic activation, and complement. J. Clin. Invest. 130, 3950–3953 (2020).CAS PubMed PubMed Central Google Scholar 
  17. 17.Varga, Z. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395, 1417–1418 (2020).CAS Article Google Scholar 
  18. 18.Long-term Immunological Health Consequences of COVID-19 (British Society for Immunology, 2020); https://www.immunology.org/sites/default/files/BSI_Briefing_Note_August_2020_FINAL.pdf
  19. 19.Di Toro, A. et al. Long COVID: long-term effects? Eur. Heart J. Suppl. 23, E1–E5 (2021).Article Google Scholar 
  20. 20.Zhang, L. et al. Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues. Proc. Natl Acad. Sci. USA 118, e2105968118 (2021).
  21. 21.Cai, M., Bowe, B., Xie, Y. & Al-Aly, Z. Temporal trends of COVID-19 mortality and hospitalisation rates: an observational cohort study from the US Department of Veterans Affairs. BMJ Open 11, e047369 (2021).Article Google Scholar 
  22. 22.Kind, A. J. H. & Buckingham, W. R. Making neighborhood-disadvantage metrics accessible—The Neighborhood Atlas. N. Engl. J. Med. 378, 2456–2458 (2018).Article Google Scholar 
  23. 23.Xie, Y., Bowe, B. & Al-Aly, Z. Burdens of post-acute sequelae of COVID-19 by severity of acute infection, demographics and health status. Nat. Commun. 12, 6571 (2021).CAS Article Google Scholar 
  24. 24.Bowe, B. et al. Acute kidney injury in a national cohort of hospitalized US veterans with COVID-19. Clin. J. Am. Soc. Nephrol. 16, 14–25 (2020).Article Google Scholar 
  25. 25.Bowe, B., Xie, Y., Xu, E. & Al-Aly, Z. Kidney outcomes in long COVID. J. Am. Soc. Nephrol. 32, 2851–2862 (2021).CAS Article Google Scholar 
  26. 26.Harrell, F. E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis (Springer, 2015).
  27. 27.Schneeweiss, S. et al. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology 20, 512–522 (2009).Article Google Scholar 
  28. 28.Austin, P. C. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav. Res. 46, 399–424 (2011).Article Google Scholar 
  29. 29.Wing, C., Simon, K. & Bello-Gomez, R. A. Designing difference in difference studies: best practices for public health policy research. Annu. Rev. Public Health 39, 453–469 (2018).Article Google Scholar 
  30. 30.Lechner, M. The estimation of causal effects by difference-in-difference methods. Found. Trends Econom. 4, 165–224 (2011).Article Google Scholar 
  31. 31.Imbens, G. W. & Angrist, J. D. Identification and estimation of local average treatment effects. Econometrica 62, 467–475 (1994).Article Google Scholar 
  32. 32.Dimick, J. B. & Ryan, A. M. Methods for evaluating changes in health care policy: the difference-in-differences approach. JAMA 312, 2401–2402 (2014).CAS Article Google Scholar 
  33. 33.Funk, M. J. et al. Doubly robust estimation of causal effects. Am. J. Epidemiol. 173, 761–767 (2011).Article Google Scholar 
  34. 34.Davis, H. E. et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 38, 101019 (2021).Article Google Scholar 
  35. 35.Lipsitch, M., Tchetgen Tchetgen, E. & Cohen, T. Negative controls: a tool for detecting confounding and bias in observational studies. Epidemiology 21, 383–388 (2010).Article Google Scholar 

Download references


This study used data from the VA COVID-19 Shared Data Resource. This research was funded by the US Department of Veterans Affairs (to Z.A.-A.) and two American Society of Nephrology and KidneyCure fellowship awards (to Y.X. and B.B.). The contents do not represent the views of the US Department of Veterans Affairs or the US government.

1000 Peer Reviewed Studies Questioning Covid-19 Vaccine Safety

Peer Reviewed Medical Papers Submitted To Various Medical Journals, Evidencing A Multitude Of Adverse Events In Covid-19 Vaccine Recipients.

The list includes studies published as of January 20, 2022 concerning the potential adverse reaction from COVID-19 vaccines, such as myocarditis, thrombosis, thrombocytopenia, vasculitis, cardiac, Bell’s Palsy, immune-mediated disease, and many more.

  1. Myocarditis after mRNA vaccination against SARS-CoV-2, a case series: https://www.sciencedirect.com/science/article/pii/S2666602221000409
  2. Myocarditis after immunization with COVID-19 mRNA vaccines in members of the US military. This article reports that in “23 male patients, including 22 previously healthy military members, myocarditis was identified within 4 days after receipt of the vaccine”: https://jamanetwork.com/journals/jamacardiology/fullarticle/2781601
  3. Association of myocarditis with the BNT162b2 messenger RNA COVID-19 vaccine in a case series of children: https://pubmed.ncbi.nlm.nih.gov/34374740/
  4. Acute symptomatic myocarditis in seven adolescents after Pfizer-BioNTech COVID-19 vaccination: https://pediatrics.aappublications.org/content/early/2021/06/04/peds.2021-052478
  5. Myocarditis and pericarditis after vaccination with COVID-19 mRNA: practical considerations for care providers: https://www.sciencedirect.com/science/article/pii/S0828282X21006243
  6. Myocarditis, pericarditis and cardiomyopathy after COVID-19 vaccination: https://www.sciencedirect.com/science/article/pii/S1443950621011562
  7. Myocarditis with COVID-19 mRNA vaccines: https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.121.056135
  8. Myocarditis and pericarditis after COVID-19 vaccination: https://jamanetwork.com/journals/jama/fullarticle/2782900
  9. Myocarditis temporally associated with COVID-19 vaccination: https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.121.055891.
  10. COVID-19 Vaccination Associated with Myocarditis in Adolescents: https://pediatrics.aappublications.org/content/pediatrics/early/2021/08/12/peds.2021-053427.full.pdf
  11. Acute myocarditis after administration of BNT162b2 vaccine against COVID-19: https://pubmed.ncbi.nlm.nih.gov/33994339/
  12. Temporal association between COVID-19 vaccine Ad26.COV2.S and acute myocarditis: case report and review of the literature: https://www.sciencedirect.com/science/article/pii/S1553838921005789
  13. COVID-19 vaccine-induced myocarditis: a case report with review of the literature: https://www.sciencedirect.com/science/article/pii/S1871402121002253
  14. Potential association between COVID-19 vaccine and myocarditis: clinical and CMR findings: https://www.sciencedirect.com/science/article/pii/S1936878X2100485X
  15. Recurrence of acute myocarditis temporally associated with receipt of coronavirus mRNA disease vaccine 2019 (COVID-19) in a male adolescent: https://www.sciencedirect.com/science/article/pii/S002234762100617X
  16. Fulminant myocarditis and systemic hyper inflammation temporally associated with BNT162b2 COVID-19 mRNA vaccination in two patients: https://www.sciencedirect.com/science/article/pii/S0167527321012286.
  17. Acute myocarditis after administration of BNT162b2 vaccine: https://www.sciencedirect.com/science/article/pii/S2214250921001530
  18. Lymphohistocytic myocarditis after vaccination with COVID-19 Ad26.COV2.S viral vector: https://www.sciencedirect.com/science/article/pii/S2352906721001573
  19. Myocarditis following vaccination with BNT162b2 in a healthy male: https://www.sciencedirect.com/science/article/pii/S0735675721005362
  20. Acute myocarditis after Comirnaty (Pfizer) vaccination in a healthy male with previous SARS-CoV-2 infection: https://www.sciencedirect.com/science/article/pii/S1930043321005549
  21. Acute myocarditis after vaccination with SARS-CoV-2 mRNA-1273 mRNA: https://www.sciencedirect.com/science/article/pii/S2589790X21001931
  22. Acute myocarditis after SARS-CoV-2 vaccination in a 24-year-old man: https://www.sciencedirect.com/science/article/pii/S0870255121003243
  23. A series of patients with myocarditis after vaccination against SARS-CoV-2 with mRNA-1279 and BNT162b2: https://www.sciencedirect.com/science/article/pii/S1936878X21004861
  24. COVID-19 mRNA vaccination and myocarditis: https://pubmed.ncbi.nlm.nih.gov/34268277/
  25. COVID-19 vaccine and myocarditis: https://pubmed.ncbi.nlm.nih.gov/34399967/
  26. Epidemiology and clinical features of myocarditis/pericarditis before the introduction of COVID-19 mRNA vaccine in Korean children: a multicenter study https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resourc e/en/covidwho-1360706.
  27. COVID-19 vaccines and myocarditis: https://pubmed.ncbi.nlm.nih.gov/34246566/
  28. Myocarditis and other cardiovascular complications of COVID-19 mRNA-based COVID-19 vaccines https://www.cureus.com/articles/61030-myocarditis-and-other-cardiovascular-complications-of-the-mrna-based-covid-19-vaccines
  29. Myocarditis and other cardiovascular complications of COVID-19 mRNA-based COVID-19 vaccines https://www.cureus.com/articles/61030-myocarditis-and-other-cardiovascular-complications-of-the-mrna-based-covid-19-vaccines
  30. Myocarditis, pericarditis, and cardiomyopathy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34340927/
  31. Myocarditis with covid-19 mRNA vaccines: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.121.056135
  32. Association of myocarditis with COVID-19 mRNA vaccine in children: https://media.jamanetwork.com/news-item/association-of-myocarditis-with-mrna-co vid-19-vaccine-in-children/
  33. Association of myocarditis with COVID-19 messenger RNA vaccine BNT162b2 in a case series of children: https://jamanetwork.com/journals/jamacardiology/fullarticle/2783052
  34. Myocarditis after immunization with COVID-19 mRNA vaccines in members of the U.S. military: https://jamanetwork.com/journals/jamacardiology/fullarticle/2781601%5C
  35. Myocarditis occurring after immunization with COVID-19 mRNA-based COVID-19 vaccines: https://jamanetwork.com/journals/jamacardiology/fullarticle/2781600
  36. Myocarditis following immunization with Covid-19 mRNA: https://www.nejm.org/doi/full/10.1056/NEJMc2109975
  37. Patients with acute myocarditis after vaccination withCOVID-19 mRNA: https://jamanetwork.com/journals/jamacardiology/fullarticle/2781602
  38. Myocarditis associated with vaccination with COVID-19 mRNA: https://pubs.rsna.org/doi/10.1148/radiol.2021211430
  39. Symptomatic Acute Myocarditis in 7 Adolescents after Pfizer-BioNTech COVID-19 Vaccination: https://pediatrics.aappublications.org/content/148/3/e2021052478
  40. Cardiovascular magnetic resonance imaging findings in young adult patients with acute myocarditis after COVID-19 mRNA vaccination: a case series: https://jcmr-online.biomedcentral.com/articles/10.1186/s12968-021-00795-4
  41. Clinical Guidance for Young People with Myocarditis and Pericarditis after Vaccination with COVID-19 mRNA: https://www.cps.ca/en/documents/position/clinical-guidance-for-youth-with-myocarditis-and-pericarditis
  42. Cardiac imaging of acute myocarditis after vaccination with COVID-19 mRNA: https://pubmed.ncbi.nlm.nih.gov/34402228/
  43. Case report: acute myocarditis after second dose of mRNA-1273 SARS-CoV-2 mRNA vaccine: https://academic.oup.com/ehjcr/article/5/8/ytab319/6339567
  44. Myocarditis / pericarditis associated with COVID-19 vaccine: https://science.gc.ca/eic/site/063.nsf/eng/h_98291.html
  45. The new COVID-19 mRNA vaccine platform and myocarditis: clues to the possible underlying mechanism: https://pubmed.ncbi.nlm.nih.gov/34312010/
  46. Myocarditis associated with COVID-19 vaccination: echocardiographic, cardiac tomography, and magnetic resonance imaging findings: https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.121.013236
  47. In-depth evaluation of a case of presumed myocarditis after the second dose of COVID-19 mRNA vaccine: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.121.056038
  48. Occurrence of acute infarct-like myocarditis after COVID-19 vaccination: just an accidental coincidence or rather a vaccination-associated autoimmune myocarditis?: https://pubmed.ncbi.nlm.nih.gov/34333695/

This list is not meant to be all inclusive of all peer-reviewed potential harms from mRNA vaccines. To access any of the 1,000 Vaccine Harms published in Medical journals Click The Link Below:



Updated_Peer_Reviewed_medical_papers_submitted_to_various_medical.pdfDownload PDF • 1.01MB

Endothelial dysfunction in COVID-19: Current findings and therapeutic implications

Authors: Matthias P Nägele 1Bernhard Haubner 1Felix C Tanner 1Frank Ruschitzka 1Andreas J Flammer 2

Coronavirus disease 2019 (COVID-19) increases the risk of several non-pulmonary complications such as acute myocardial injury, renal failure or thromboembolic events. A possible unifying explanation for these phenomena may be the presence of profound endothelial dysfunction and injury. This review provides an overview on the association of endothelial dysfunction with COVID-19 and its therapeutic implications. Endothelial dysfunction is a common feature of the key comorbidities that increase risk for severe COVID-19 such as hypertension, obesity, diabetes mellitus, coronary artery disease or heart failure. Preliminary studies indicate that vascular endothelial cells can be infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and evidence of widespread endothelial injury and inflammation is found in advanced cases of COVID-19. Prior evidence has established the crucial role of endothelial cells in maintaining and regulating vascular homeostasis and blood coagulation. Aggravation of endothelial dysfunction in COVID-19 may therefore impair organ perfusion and cause a procoagulatory state resulting in both macro- and microvascular thrombotic events. Angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs) and statins are known to improve endothelial dysfunction. Data from smaller observational studies and other viral infections suggests a possible beneficial effect in COVID-19. Other treatments that are currently under investigation for COVID-19 may also act by improving endothelial dysfunction in patients. Focusing therapies on preventing and improving endothelial dysfunction could improve outcomes in COVID-19. Several clinical trials are currently underway to explore this concept.

For More Information: https://pubmed.ncbi.nlm.nih.gov/33161318/