Tracking coronavirus in animals takes on new urgency

Authors: Ariana Eunjung Cha  May 20, 2022 The Washington Post

Researchers Sarah Hamer and Lisa Auckland donned their masks and gowns as they pulled up to the suburban home in College Station, Tex. The family of three inside had had covid a few weeks earlier, and now it was time to check on the pets.

Oreo the rabbit was his usual chill self, and Duke the golden retriever was a model patient, lying on his back as Hamer and Auckland swabbed their throats and took blood samples. But Ellie, a Jack Russell terrier, wiggled and barked in protest. “She was not exactly happy with us,” Auckland recalled. “But we’re trying to understand how transmission works within a household, so we needed samples from everyone.”

The questions driving the researchers goes far beyond pet welfare. They’re investigating whether animals infected with the coronavirus might become reservoirs for the evolution of new variants that might jump back into humans — an issue with huge implications for both human and animal health.

In year three of the pandemic, scientists have confirmed that the virus believed to have first spilled over to humans from bats or possibly pangolins has already spread to at least 20 other animal species, including big cats, ferrets, North American white-tailed deer and great apes. To date, incidents of animals infecting humans are rare. Only three species — hamsters in Hong Kong, mink in the Netherlands and, possibly, also white-tailed deer in the United States and Canada — have transmitted a mutated, albeit mostly benign, version of the virus back to humans. But those cases are spurring concern.

The search for infected animals in Texas — led by Texas A&M University in conjunction with the U.S. Centers for Disease Control and Prevention — is part of a scattered but growing global effort to monitor pets, livestock and wildlife for new, potentially more dangerous coronavirus variants and stop them from wreaking havoc on humans.

Tracking coronavirus in animals takes on new urgency

The World Health Organization warned in March that animal reservoirs could lead to “potential acceleration of virus evolution” and new variants. The agency noted the large numbers of infected animals, and it urged countries to increase their monitoring of mammalian species for SARS-CoV-2 and suspend the sale of live, wild mammals in food markets as an emergency measure. The CDC this year also endorsed efforts to track the virus in animals, even as it described the risk of transmission to humans as “low.”

In March, a city in China ordered the killing of pets whose owners had tested positive, but the action was put on hold after a public outcry. (There was no evidence these pets were spreading the virus.) Earlier this year, Hong Kong’s first outbreak in months is believed to have been caused by hamsters imported from Europe.

Meanwhile, U.S. scientists estimated late last year that a third of white-tailed deer in several states appear to carry antibodies to the coronavirus, suggesting recent infection, and three snow leopards at the Lincoln Children’s Zoo in Nebraska died of covid-19. In 2020, Denmark had culled millions of mink after they were infected and the virus spilled back into humans.

Most new variants are simply scientific curiosities, and they die out. The challenge for scientists is to create a system to identify the dangerous ones — the ones that are more transmissible, more deadly or more likely to break through vaccines — and attempt to halt their transmission.

“We need to be very aware there are going to be more epidemics and pandemics and plan ahead,” said Pamela Bjorkman, a professor at the California Institute of Technology.

In the span of more than two years, the coronavirus itself has been evolving faster than most anyone expected — creating an evolutionary “super-tree” with major new branches seeming to sprout every few months. The environment in which these variants are forming, researchers surmise, is likely one that allows the virus to live longer and thereby make more copies of itself, increasing the prospect of new mutations.

One leading theory is immunocompromised patients, such as those with cancer or HIV, who can harbor the infection for many weeks or months, as compared with mere days for most people. But another more daunting possibility is that the virus is finding hosts among the more than 1 million animal species, many still not catalogued, that inhabit Earth.

“It’s a scary thing.” Bjorkman, who has been working on a universal coronavirus vaccine, said there has long been viral transmission between humans and animals that nobody pays attention to.

The problem is that “every once in a while, there is transmission that catches on” and will explode if it spills into the human population, she said.

Animal reservoirs

Scientists believe most major outbreaks of disease serious enough to be deemed epidemics or pandemics have begun with animals.

H5N1, a highly pathogenic flu that occurs in wild birds, sent fear through the medical community after a young boy died of it in Hong Kong in May 1997. (The first U.S. case was reported in Colorado in April.) SARS1, which caused an outbreak in Asia from 2002 to 2004, infecting more than 8,000 people, is believed to have jumped from civets, a catlike mammal, to humans.

The H1N1 influenza virus that hit the world in 2009 and is estimated to have infected as many as 1.4 billion people is believed to be what scientists call a “reassortment” of flu that has been found in birds, pigs and humans. The MERS virus, first reported in Saudi Arabia in 2012 with a fatality rate as high as 35 percent, is believed to have emerged from camels.

SARS-CoV-2, the pathogen terrorizing the world since early 2020, has higher potential for transmission to animals than many other known viruses because it invades the body by latching onto a receptor known as ACE2, which is found in a number of species. In recent weeks, researchers reported evidence to support early suspicions that the original coronavirus that jumped into humans sometime before January 2020 may have come from wet market animals, perhaps bats, perhaps raccoon dogs, or another animal used for food or fur in Wuhan, China.

As of April, scientists had logged 675 coronavirus outbreaks in animals, affecting 23 species in 36 countries, and other species have been shown to be vulnerable in lab experiments. But there are likely many thousands more that are susceptible. A University of California at Davis study of the potential vulnerability of different species to coronavirus infection — based on modeling of which ones had ACE2 cellular receptors similar to those in humans, because that’s how the virus enters the body — ranked animals as diverse as giant anteaters and bottlenose dolphins as high risk, and Siberian tigers, sheep and cattle as medium risk.

So far, most of the coronavirus transmission appears to have jumped from animals to humans. Scientists have documented infection going in the other direction only three times: from mink to humans, hamsters to humans, and one likely case of deer to humans. None of those three events is believed to have introduced dangerous variants.

In its monthly situation report in late April, the World Organization for Animal Health said that although the main driver of international viral spread is still human-to-human transmission, animal cases “continue to rise.” The big question is not whether certain animals can be infected, researchers say. It is which might act as so-called reservoirs that can serve as sources of new variants that could pose greater threats to humans.

Hong Kong

Leo Poon recalled feeling immediately uneasy in January when he got word of a new coronavirus infection in the northern part of the island.

Hong Kong had been quiet for months, and the delta wave that had devastated much of the world seemed to wash over the city with few cases. The city had implemented a strict — some it called draconian — “zero covid” policy that had kept the islands infection-free for long periods. Poon, head of the division of public health laboratory science at the University of Hong Kong, had been helping the government sequence SARS-CoV-2 samples from patients to find out where infections originated and which close contacts were at risk.

This new patient was a 23-year-old saleswoman with mild symptoms of headache and fever who had not had contact with anyone with an infection. Nor had she traveled or been in contact with anyone who had. When Poon checked the global databank that scientists are using to track the evolution of the virus, he was surprised to find that some of the genetic mutations in the young woman’s sample appeared to be novel and had never been documented in any other human sample.

As he delved into the case report, Poon noticed the woman worked at a pet shop, and that’s when it hit him: Could she have gotten covid from an animal?

A flurry of hurried phone calls and emails followed, and Hong Kong authorities locked down the store, Little Boss in the shopping district of Causeway Bay, and a related warehouse, swabbing the nearly 200 animals they found.“We really have to highlight the concept of one health. It’s not only about human health. We have to consider health in animals and the environment. And if you don’t look after these areas, we are the one that suffer at the end.” Leo Poon, head of the division of public health laboratory science at the University of Hong Kong

The rabbits, chinchillas and guinea pigs were cleared. But 11 of the hamsters, specifically the golden Syrian hamsters, tested positive for coronavirus, with a variant similar to the one that had infected the woman. The timelines matched: The hamsters had been flown in from the Netherlands on Jan. 7. The woman became ill on Jan. 11.

The young woman, and a second patient believed to have gotten sick directly from a hamster whose case was described in a preprint paper in the Lancet, did not get very ill. But Poon worried that one of the major changes to the virus related to how it attaches to receptors. He feared that if it was allowed to hop back and forth between humans and animals, it might ultimately change into something less benign.

Investigators identified 150 people, mostly customers who had visited the store, who were at risk of being infected and ordered them into quarantine, banned the importation of small mammals, and put to sleep the remaining 2,000 hamsters in city pet stores within days of the discovery of the link. Public health officials “strongly advised” pet owners to turn over any additional hamsters to be euthanized.

“We really have to highlight the concept of one health,” Poon reflected. “It’s not only about human health. We have to consider health in animals and the environment. And if you don’t look after these areas, we are the one that suffer at the end.”

Ontario, Canada

The first white-tailed deer were tested on a whim.

It was early 2020, and Andrew Bowman, an associate professor of veterinary medicine at Ohio State University, was tracking the animals near Columbus for other purposes and thought he might as well add in one more test. When the results came back positive, he was so taken aback that he rechecked and then triple-checked, and then called in the U.S. Department of Agriculture to verify before announcing the finding to the world.

“At that point, it was a surprise,” he recalled. “But when we step back, we really shouldn’t have been that surprised.”

As suburban communities expand into what was once forest, the population of white-tailed deer living in proximity to humans is increasing. While few people interact directly with deer, scientists are investigating whether the animals might be exposed to the coronavirus through discarded face masks and other trash, contaminated water or, perhaps, some intermediary species. Several scientific teams confirmed the breadth of the cases in deer and found that most of the animals appeared to be asymptomatic.

In August, the USDA announced that its own analysis found antibodies in about one-third of deer in Illinois, Michigan, New York and Pennsylvania. It issued a warning to the public to be cautious in their interactions, and to limit contact between wildlife and domestic animals.

In Canada, Brad Pickering, an animal pathogens expert with the country’s Food Inspection Agency, went further to learn more about the evolution of the virus in deer. Examining samples of 300 animals hunted in Ontario from Nov. 1 to Dec. 31, he was shocked to find 76 mutations in some deer strains.

“That’s a lot, more than omicron,” he said of the number of mutations. “It is showing there seems to be some adaptation to deer or wildlife, in general.”

According to a preprint paper he and a group of more than 30 scientists posted in February, the closest known branches to the deer strain were found in humans in Michigan a year earlier. Those, in turn, were related to mink samples from Michigan previously identified in September/October 2020. Given that the area where the deer samples were taken in southwestern Ontario is adjacent to Michigan, the researchers wondered whether the variant had jumped from humans to mink and then to deer.“Even if it’s left the human population. It doesn’t mean we’re done with it.” Brad Pickering, animal pathogens expert with the country’s Food Inspection Agency

Even more odd, the researchers identified a human sample from Michigan that was very similar to the highly mutated deer sample. It turned out that person had had close contact with deer, and while the information could not conclusively point to deer-to-human transmission, the evidence was strong.

Neither Bowman nor Pickering worries that the new deer strains of coronavirus pose any immediate danger to humans. Bowman said that the threat is “more of a long-game question.” If “it evolves in a different trajectory than humans, how long do we have before it’s diverse enough that the next pandemic strain spills back into humans?”

“Even if it’s left the human population,” Pickering said, “it doesn’t mean we’re done with it.”


Sarah Hamer’s work at Texas A&M University involves the broad ecology of animals and humans. The future of coronavirus variants, she explained, depends not just on how we interact with a single animal species but also on the web of associations among humans, domestic animals and wildlife.

For cats and dogs, scientists are somewhat confident the transmission has been mostly one-way, from humans to the animals spurred by people snuggling and playing with their pets. Hamer’s research aims to clarify details about the chain of transmission — who brought the infection into the household, who got it next and so forth.

Figuring out what is going on with deer has been much more challenging.

“We cannot explain it as spillover from humans, because not all of them have had a close contact,” Hamer explained. “That’s where it gets pretty interesting to think about.”

On the same weekend that Hamer and Auckland were taking samples from Oreo, Duke, Ellie and their human owners, another team from the same lab was in a nearby forest in eastern Texas, studying small and medium mammals.

After setting a couple of hundred traps that evening, they returned the next morning to find wild mice, wild rats and other mammals. While the primary purpose of the study was to look at vector-borne pathogens such as tick diseases, all the animals were also swabbed for coronavirus before being released back into the woods. The wildlife samples are being stored in a freezer, as Hamer awaits funding to test them.

Right now, such efforts are being conducted mostly piecemeal, often added to non-covid work that is already funded. She and other scientists say a more coordinated global surveillance approach that will target a range of species during different seasons and in different geographic areas is needed to stop a potential new generation of variants.

“There is so much more that should be done,” she said.

New Omicron BA.4 and BA.5 Sublineages May Evade Vaccines, Natural Immunity. What Experts Say

Authors: Mint Newsletters April 29, 2022

  • The BA.4 and BA.5 sublineages appear to be more infectious than the earlier BA.2 lineage
  • The sub-lineages have been detected in seven of South Africa’s nine provinces and 20 countries worldwide

New omicron sublineages, discovered by South African scientists this month, are likely able to evade vaccines and natural immunity from prior infections, the head of gene sequencing units that produced a study on the strains said, according to Bloomberg report.

It is important to note that the BA.4 and BA.5 sublineages appear to be more infectious than the earlier BA.2 lineage, which itself was more infectious than the original omicron variant, Tulio de Oliveira, the head of the institutes, said.

Omicron sublineages  mutated to evade immunity

  • As almost all South Africans either having been vaccinated against the coronavirus or having had a prior infection the current surge in cases means that the strains are more likely to be capable of evading the body’s defenses rather than simply being more transmissible, de Oliveira said.
  • There are “mutations in the lineages that allow the virus to evade immunity,” he said in a response to queries. “We expect that it can cause reinfections and it can break through some vaccines, because that’s the only way something can grow in South Africa where we estimate that more than 90% of the population has a level of immune protection.”
  • South Africa is seen as a key harbinger of how the omicron variant and its sublineages are likely to play out in the rest of the world. South African and Botswanan scientists discovered omicron in November and South Africa was the first country to experience a major surge of infections as a result of the variant.
  • The new sublineages account for about 70% of new coronavirus cases in South Africa, de Oliveira said in a series of Twitter postings. 
  • “Our main scenario for Omicron BA.4 and BA.5 is that it increases infections but that does not translate into large hospitalizations and deaths,” he said.
  • So far, the sublineages have been detected in seven of South Africa’s nine provinces and 20 countries worldwide. 

Two new Omicron COVID subvariants BA.4 and BA.5 being analyzed by WHO

Only a few dozen cases of BA.4 and BA.5 have been reported to the global GISAID database, according to WHO

Authors: Jennifer Rigby Reuters April 11, 2022

The World Health Organization said on Monday it is tracking a few dozen cases of two new sub-variants of the highly transmissible Omicron strain of the coronavirus to assess whether they are more infectious or dangerous.

It has added BA.4 and BA.5, sister variants of the original BA.1 Omicron variant, to its list for monitoring. It is already tracking BA.1 and BA.2 — now globally dominant — as well as BA.1.1 and BA.3.

The WHO said it had begun tracking them because of their “additional mutations that need to be further studied to understand their impact on immune escape potential.”

Viruses mutate all the time but only some mutations affect their ability to spread or evade prior immunity from vaccination or infection, or the severity of disease they cause.

For instance, BA.2 now represents nearly 94% of all sequenced cases and is more transmissible than its siblings, but the evidence so far suggests it is no more likely to cause severe disease.

Only a few dozen cases of BA.4 and BA.5 have been reported to the global GISAID database, according to WHO.

The UK’s Health Security Agency said last week BA.4 had been found in South Africa, Denmark, Botswana, Scotland and England from Jan. 10 to March 30.

All the BA.5 cases were in South Africa as of last week, but on Monday Botswana’s health ministry said it had identified four cases of BA.4 and BA.5, all among people aged 30 to 50 who were fully vaccinated and experiencing mild symptoms.

COVID cases rise again in half the states

Change in reported COVID-19 cases per 100k people in the last two weeks

March 23 to April 5, 2022

Half of the states are seeing COVID case numbers rise again while nationwide totals continue to fall.

The big picture: The Omicron subvariant known as BA.2 is the dominant strain circulating around the U.S., accounting for almost three out of every four cases.

By the numbers: Overall, cases dropped 5% across the U.S. to an average of about 28,700 cases from an average of more than 30,000 cases two weeks ago.

  • Three states — Alaska, Vermont and Rhode Island — had more than 20 new cases per 100,000 people.
  • Nine states — Utah, Montana, South Dakota, Kansas, Louisiana, Iowa, Arkansas, Indiana and Tennessee — had three or fewer new cases per 100,000 people.

Between the lines: Deaths fell to an average of 600 a day, down 34% from just over 900 a day two weeks ago.

What we’re watching: While U.S. officials have said they aren’t expecting a significant rise in hospitalizations or deaths, there have been signs of hospitalizations rising among older individuals in the U.K., the Guardian reported.

  • Since those numbers lag behind new cases, we won’t have a clear view of that impact in the U.S. for a few weeks.
  • The highly contagious subvariant surged through parts of Europe but probably will spare many Americans, thanks in part to this winter’s Omicron surge.

Axios on facebookAxios on twitterAxios on linkedinAxios on email

This New COVID Variant Is the Most Unpredictable One Yet

Authors: David Axe Published Apr. 03, 2022 10:47PM ET 

After spreading across Asia and Europe, the BA.2 subvariant of the novel coronavirus is now dominant in the United States, according to the U.S. Centers for Disease Control and Prevention.

Right now, U.S. COVID cases are at a six-month low. But what happens next in the U.S. and nearby countries is hard to predict. Looking to Europe for hints isn’t enormously helpful because, on that continent, BA.2 has behaved… unpredictably. Indeed, unpredictability might be exactly what Americans—and everyone else—should expect as the pandemic enters its 28th month.

A patchwork of public health rules, varying vaccination rates, and differing amounts of natural immunity from past infections mean that no two countries are the same. But even those differences don’t fully explain BA.2’s uneven impact.

“The bottom line is that it is not predictable what BA.2 will do,” John Swartzberg, a professor emeritus of infectious diseases and vaccinology at the University of California-Berkeley’s School of Public Health, told The Daily Beast.

Amid this confusion, at least one thing remains true, however. As volatile as BA.2 is when it comes to countries and populations, you can still protect yourself by getting vaccinated.

Usually, there’s a pattern with new COVID lineages. An uptick in positive tests from clinics, hospitals, and wastewater samples correlates with a proportional increase in symptomatic infections.

But when it comes to BA.2, “something different seems to be occurring,” Peter Hotez, an expert in vaccine development at Baylor College, told The Daily Beast. “BA.2 is going up everywhere in terms of percentage of virus isolated” in tests, Hotez explained, “yet this translates into many different scenarios in terms of rise in cases.”“I can’t say with any certainty that this can be chalked up to their vaccine policies or vaccine politics alone.”

BA.2 is a highly mutated cousin of the previously dominant BA.1 subvariant of Omicron, the latest major variant—“lineage” is the scientific term–of the SARS-CoV-2 virus. Changes to the spike protein, which helps the virus to grab onto and infect our cells, make BA.1 and BA.2 extremely transmissible.

BA.1, which first appeared last fall and quickly drove record infections across much of the world, was the most contagious respiratory virus many virologists had ever seen—until BA.2 showed up a few weeks after its older cousin. BA.2 could be as much as 80 percent more transmissible than BA.1, Swartzberg said.

That’s why BA.2 eventually has outcompeted BA.1 and become the dominant sublineage in a steadily growing number of countries. It happened first in China, which for more than two years managed to avoid major COVID outbreaks through a combination of travel restrictions, business closures, careful contact-tracing and strict quarantine rules.

BA.2 blew right through China’s so-called “zero-COVID” strategy, causing cases to spike in Hong Kong then neighboring Shenzen then Shanghai. Authorities locked down each city in turn but still failed to stop the sublineage’s march across the country.

Europe was next. Health officials in the Americas watched nervously as BA.2 became dominant in one European country after another. After all, Europe tends to catch a particular coronavirus lineage or sublineage a month or six weeks before the U.S. and its neighbors do.

But BA.2 hasn’t sent clear signals. The first confusing datapoint actually wasn’t in Europe—it was in Africa. Weirdly, BA.2 was a virtual no-show in South Africa. That country logged a big surge in BA.1 cases in December, and then… nothing. A steady decline in cases even as BA.2 was ravaging other big, rich countries.

Some European countries likewise have escaped significant harm from BA.2. Others are reeling.

The United Kingdom and France caught BA.1 big-time in December and January. Both countries reported record numbers of cases that, owing to the vaccines, fortunately didn’t lead to record hospitalizations and deaths. Austria, by contrast, muddled through BA.1 before taking a huge hit from BA.2.

The U.K. reported a weekly average of 183,000 new daily cases in early January. Three weeks later, France counted a staggering weekly average of 354,000 daily new cases. The U.K.’s worst day for BA.1 deaths was Feb. 2, when authorities reported 535 COVID fatalities. On France’s worst day of BA.1, Feb. 8, 691 people died of COVID.

Comparing the two countries is natural. Not only are they neighbors, they also have roughly the same number of people–around 67 million. Both have managed to fully vaccinate around three-quarters of their populations. Both have wound down all major domestic COVID restrictions.

It makes sense that BA.2 would affect France and the U.K. similarly. And there, at least, the sublineage made some sense. The BA.2 wave that rolled across the U.K. and France starting in February has been relatively minor compared to the BA.1 wave—in both countries.

France’s daily new BA.2 cases seem to be leveling off at a weekly average of 126,000 infections. The U.K.’s weekly average of daily new cases peaked at 125,000 on March 21. Deaths tend to lag cases by a few weeks, so it’s not clear how fatal BA.2 will be in either country, but so far the worst daily death toll is much lower than it was for BA.1.

Now consider Austria. With just 8.9 million people, it’s smaller than the U.K. and France. But it’s equally well-vaccinated—and even came close to having a nationwide vaccine mandate before canceling the planned mandate back in early March, days before it was due to take effect. Austria, like most countries in Europe, has ended domestic restrictions on businesses and travel.

But unlike the U.K. and France, Austria caught BA.2 worsethan BA.1. Daily new case rates from BA.1 swelled to a weekly average of 34,000 and stayed there for a month and a half. Then BA.2 arrived in early March and, without much respite from BA.1, added another 10,000 daily new cases on top of the existing weekly average.“I don’t see a consistent thread between countries.”

Aside from a tiny dip in mid-March, the daily death rate has been going up and up on a weekly basis since January in Austria. BA.2 is claiming 40 lives a day, day after day on average.

It’s difficult to determine which policies make the difference—assuming differences in public health strategy matter at all against a virus as contagious as BA.2. Yes, Austria almost had a vaccine mandate, but it didn’t actually take force. And it’s very hard to say what the proposed mandate’s impact was, or would have been.

“Even if no additional people got vaccinated after a mandate was introduced, this doesn’t mean it didn’t ‘work,’ as the purpose of the mandate may have been to simply ensure that the only people you encounter when out at a restaurant or concert are vaccinated,” Maxwell Smith, a bioethicist at Western University in Ontario, told The Daily Beast.

“In that case, the vaccination mandate ‘working’ would mean reducing levels of transmission of the virus in the settings to which it applied,” Smith added. “Or, in the case of preserving critical infrastructure, it would mean something like fewer cases of severe illness or hospitalizations among those to whom the mandate applied.”

There are lots of ways Austria’s vaccine mandate might have improved outcomes for millions of Austrians at risk of catching COVID. But that didn’t stop Austria as a whole from suffering worse from BA.2 than other nearby countries.

“There are many factors that may have led to the case numbers we’re seeing both in Austria and its neighboring countries, so I can’t say with any certainty that this can be chalked up to their vaccine policies or vaccine politics alone,” Smith said.

Experts are at a loss to explain what other factors might be at work. If nearby countries have vaccinated roughly the same percentage of their populations and have also reopened their borders, businesses and schools—thus allowing for a certain level of natural immunity from past infection—then they should be equally prepared for a new viral lineage.

Clearly, they’re not. “I don’t see a consistent thread between countries,” Swartzberg said.

There are serious implications for the rest of the world as it braces for BA.2. Even strong vaccine uptake and lingering natural immunity might not spare you a big bump in infections. By the same token, BA.2 might just bypass a country for reasons no one fully understands, like it did with South Africa.

But the experiences of whole countries aren’t the experiences of individuals. Yes, BA.2 might have unpredictable effects on populations. But the science is clear on how people can reduce their personal risk. Favor well-ventilated indoor spaces. Wear an N95 mask when local case rates are high.

Most importantly, get vaccinated and boosted.

Close relatives of MERS-CoV in bats use ACE2 as their functional receptors

Authors: Qing Xiong,  View ORCID , , ei Cao,  Chengbao Ma,  Chen Liu, Junyu Si,  Peng Liu,  Mengxue Gu,  Chunli Wang, Lulu Shi, Fei Tong, Meiling Huang, Jing Li, Chufeng Zhao,  Chao Shen,   Yu Chen,   Huabin Zhao,  Ke Lan,  Xiangxi Wang,  Huan Yan


Middle East Respiratory Syndrome coronavirus (MERS-CoV) and several bat coronaviruses employ Dipeptidyl peptidase-4 (DPP4) as their functional receptors14. However, the receptor for NeoCoV, the closest MERS-CoV relative yet discovered in bats, remains enigmatic5. In this study, we unexpectedly found that NeoCoV and its close relative, PDF-2180-CoV, can efficiently use some types of bat Angiotensin-converting enzyme 2 (ACE2) and, less favorably, human ACE2 for entry. The two viruses use their spikes’ S1 subunit carboxyl-terminal domains (S1-CTD) for high-affinity and species-specific ACE2 binding. Cryo-electron microscopy analysis revealed a novel coronavirus-ACE2 binding interface and a protein-glycan interaction, distinct from other known ACE2-using viruses. We identified a molecular determinant close to the viral binding interface that restricts human ACE2 from supporting NeoCoV infection, especially around residue Asp338. Conversely, NeoCoV efficiently infects human ACE2 expressing cells after a T510F mutation on the receptor-binding motif (RBM). Notably, the infection could not be cross-neutralized by antibodies targeting SARS-CoV-2 or MERS-CoV. Our study demonstrates the first case of ACE2 usage in MERS-related viruses, shedding light on a potential bio-safety threat of the human emergence of an ACE2 using “MERS-CoV-2” with both high fatality and transmission rate.


Coronaviruses (CoVs) are a large family of enveloped positive-strand RNA viruses classified into four genera: Alpha-, Beta-, Gamma- and Delta-CoV. Generally, Alpha and Beta-CoV can infect mammals such as bats and humans, while Gamma- and Delta-CoV mainly infect birds, occasionally mammals68. It is thought that the origins of most coronaviruses infecting humans can be traced back to their close relatives in bats, the most important animal reservoir of mammalian coronaviruses 910. Coronaviruses are well recognized for their recombination and host-jumping ability, which has led to the three major outbreaks in the past two decades caused by SARS-CoV, MERS-CoV, and the most recent SARS-CoV-2, respectively1114.

MERS-CoV belongs to the linage C of Beta-CoV (Merbecoviruses), which poses a great threat considering its high case-fatality rate of approximately 35%15. Merbecoviruses have also been found in several animal species, including camels, hedgehogs, and bats. Although camels are confirmed intermediate hosts of the MERS-CoV, bats, especially species in the family of Vespertilionidae, are widely considered to be the evolutionary source of MERS-CoV or its immediate ancestor16.

Specific receptor recognition of coronaviruses is usually determined by the receptor-binding domains (RBDs) on the carboxyl-terminus of the S1 subunit (S1-CTD) of the spike proteins17. Among the four well-characterized coronavirus receptors, three are S1-CTD binding ectopeptidases, including ACE2, DPP4, and aminopeptidase N (APN)11819. By contrast, the fourth receptor, antigen-related cell adhesion molecule 1(CEACAM1a), interacts with the amino-terminal domain (NTD) of the spike S1 subunit of the murine hepatitis virus2021. Interestingly, the same receptor can be shared by distantly related coronaviruses with structurally distinct RBDs. For example, the NL63-CoV (an alpha-CoV) uses ACE2 as an entry receptor widely used by many sarbecoviruses (beta-CoV linage B)22. A similar phenotype of cross-genera receptor usage has also been found in APN, which is shared by many alpha-CoVs and a delta-CoV (PDCoV)7. In comparison, DPP4 usage has only been found in merbecoviruses (beta-CoV linage C) such as HKU4, HKU25, and related strains24.

Intriguingly, many other merbecoviruses do not use DPP4 for entry and their receptor usage remains elusive, such as bat coronaviruses NeoCoV, PDF-2180-CoV, HKU5-CoV, and hedgehog coronaviruses EriCoV-HKU3152325. Among them, the NeoCoV, infecting Neoromicia capensis in South Africa, represents a bat merbecovirus that happens to be the closest relative of MERS-CoV (85% identity at the whole genome level)2627. PDF-2180-CoV, another coronavirus most closely related to NeoCoV, infects Pipisrellus hesperidus native to Southwest Uganda2328. Indeed, NeoCoV and PDF-2180-CoV share sufficient similarity with MERS-CoV across most of the genome, rendering them taxonomically the same viral species2729. However, their S1 subunits are highly divergent compared with MERS-CoV (around 43-45% amino acid similarity), in agreement with their different receptor preference23.

In this study, we unexpectedly found that NeoCoV and PDF-2180-CoV use bat ACE2 as their functional receptor. The cryo-EM structure of NeoCoV RBD bound with the ACE2 protein from Pipistrellus pipistrellus revealed a novel ACE2 interaction mode that is distinct from how human ACE2 (hACE2) interacts with the RBDs from SARS-CoV-2 or NL63. Although NeoCoV and PDF-2180-CoV cannot efficiently use hACE2 based on their current sequences, the spillover events of this group of viruses should be closely monitored, considering their human emergence potential after gaining fitness through antigenic drift.


Evidence of ACE2 usage

To shed light on the relationship between merbecoviruses, especially NeoCoV and PDF-2180-CoV, we conducted a phylogenetic analysis of the sequences of a list of human and animal coronaviruses. Maximum likelihood phylogenetic reconstructions based on complete genome sequences showed that NeoCoV and PDF-2180-CoV formed sister clade with MERS-CoV (Fig. 1a). In comparison, the phylogenetic tree based on amino acid sequences of the S1 subunit demonstrated that NeoCoV and PDF-2180-CoV showed a divergent relationship with MERS-CoV but are closely related to the hedgehog coronaviruses (EriCoVs) (Fig. 1b). A sequence similarity plot analysis (Simplot) queried by MERS-CoV highlighted a more divergent region encoding S1 for NeoCoV and PDF-2180-CoV compared with HKU4-CoV (Fig. 1c). We first tested whether human DPP4 (hDPP4) could support the infection of several merbecoviruses through a pseudovirus entry assay30. The result revealed that only MERS-CoV and HKU4-CoV showed significantly enhanced infection of 293T-hDPP4. Unexpectedly, we detected a significant increase of entry of NeoCoV and PDF-2180-CoV in 293T-hACE2 but not 293T-hAPN, both of which are initially set up as negative controls (Fig. 1dExtended Data Fig.1).

Extended Data Figure 1

Extended Data Figure 1

Expression level of coronaviruses spike proteins used for pseudotyping.

Fig. 1

Fig. 1A clade of bat merbecoviruses can use ACE2 but not DPP4 for efficient entry.

a-b, Phylogenetical analysis of merbecoviruses (gray) based on whole genomic sequences (a) and S1 amino acid sequences (b). NL63 and 229E were set as outgroups. Hosts and receptor usage were indicated. c, Simplot analysis showing the whole genome similarity of three merbecoviruses compared with MERS-CoV. The regions that encode MERS-CoV proteins were indicated on the top. Dashed box: S1 divergent region. d, Entry efficiency of six merbecoviruses in 293T cells stably expressing hACE2, hDPP4, or hAPN. e-f, Entry efficiency of NeoCoV in cells expressing ACE2 from different bats. EGFP intensity (e); firefly luciferase activity (f). g-h, Cell-cell fusion assay based on dual-split proteins showing the NeoCoV spike protein mediated fusion in BHK-21 cells expressing indicated receptors. EGFP intensity (g), live-cell Renilla luciferase activity (h). i, Entry efficiency of six merbecoviruses in 293T cells stably expressing the indicated bat ACE2 or DPP4. Mean±SEM for di; Mean±SD for f, and h.(n=3). RLU: relative light unit.

To further validate the possibility of more efficient usage of bat ACE2, we screened a bat ACE2 cell library individually expressing ACE2 orthologs from 46 species across the bat phylogeny, as described in our previous study31(Extended Data Figs.2-3, Supplementary Table 1). Interestingly, NeoCoV and PDF-2180-CoV, but not HKU4-CoV or HKU5-CoV, showed efficient entry in cells expressing ACE2 from most bat species belonging to Vespertilionidae (vesper bats). In contrast, no entry or very limited entry in cells expressing ACE2 of humans or bats from the Yinpterochiroptera group (Fig. 1e-fExtended Data Fig.4). Consistent with the previous reports, the infection of NeoCoV and PDF-2180-CoV could be remarkably enhanced by an exogenous trypsin treatment28(Extended Data Fig.5). As indicated by the dual split protein (DSP)-based fusion assay 32, Bat37ACE2 triggers more efficient cell-cell membrane fusion than hACE2 in the presence of NeoCoV spike protein expression (Fig. 1g-h). Notably, the failure of the human or hedgehog ACE2 to support entry of EriCoV-HKU31 indicates that these viruses have a different receptor usage (Extended Data Fig.6). In agreement with a previous study2328, our results against the possibility that bat DPP4 act as a receptor for NeoCoV and PDF-2180-CoV, as none of the tested DPP4 orthologs, from the vesper bats whose ACE2 are highly efficient in supporting vial entry, could support a detectable entry of NeoCoV and PDF-2180-CoV (Fig. 1iExtended Data Fig.7). Infection assays were also conducted using several other cell types from different species, including a bat cell line Tb 1 Lu, ectopically expressing ACE2 or DPP4 from Bat40 (Antrozous pallidus), and each test yielded similar results (Extended Data Fig.8).

Extended Data Figure 2

Extended Data Figure 2

Receptor function of ACE2 from 46 bat species in supporting NeoCoV and PDF-2180-CoV entry.

Extended Data Figure 3

Extended Data Figure 3

The expression level of 46 bat ACE2 orthologs in 293T cells as indicated by immunofluorescence assay detecting the C-terminal 3×FLAG Tag.

Extended Data Figure 4

Extended Data Figure 4

Entry efficiency of PDF-2180-CoV (a-b), HKU4-CoV (c), and HKU5-CoV (d) pseudoviruses in 293T cells expressing different bat ACE2 orthologs

Extended Data Figure 5

Extended Data Figure 5

TPCK-trypsin treatment significantly boosted the entry efficiency of NeoCoV and PDF-2180-CoV on 293T cells expressing different ACE2 orthologs.

Extended Data Figure 6

Extended Data Figure 6

Hedgehog ACE2 (hgACE2) cannot support the entry of Ea-HedCoV-HKU31. (a) The expression level of ACE2 was evaluated by immunofluorescence detecting the C-terminal fused Flag tag. (b) Viral entry of SARS-CoV-2 and HKU31 into cells expressing hACE2 or hgACE2.

Extended Data Figure 7

Extended Data Figure 7

ACE2 and DPP4 receptor usage of different merbecoviruses. a, Western blot detected the expression levels of ACE2 and DPP4 orthologs in 293T cells.b, The intracellular bat ACE2 expression level by immunofluorescence assay detecting the C-terminal 3×FLAG-tag. c-d, Viral entry (c) and RBD binding (d) of different coronaviruses on 293T cells expressing different ACE2 and DPP4 orthologs.

Extended data Figure 8

Extended data Figure 8

NeoCoV and PDF2180-CoV infection of different cell types expressing either Bat40ACE2 or Bat40DPP4. The BHK-21, 293T, Vero E6, A549, Huh-7, and Tb 1 Lu were transfected with either Bat40ACE2 or Bat40DPP4. The expression and viral entry (GFP) (a) and luciferase activity (c) were detected at 16 hpi.

S1-CTD mediated species-specific binding

The inability of NeoCoV and PDF-2180-CoV to use DPP4 is consistent with their highly divergent S1-CTD sequence compared with the MERS-CoV and HKU4-CoV. We produced S1-CTD-hFc proteins (putative RBD fused to human IgG Fc domain) to verify whether their S1-CTDs are responsible for ACE2 receptor binding. The live-cell binding assay based on cells expressing various bat ACE2 showed a species-specific utilization pattern in agreement with the results of the pseudovirus entry assays (Fig. 2a). The specific binding of several representative bat ACE2 was also verified by flow-cytometry (Fig. 2b). We further determined the binding affinity by Bio-Layer Interferometry (BLI) analysis. The results indicated that both viruses bind to the ACE2 from Pipistrellus pipistrellus (Bat37) with the highest affinity (KD=1.98nM for NeoCoV and 1.29 nM for PDF-2180-CoV). In contrast, their affinities for hACE2 were below the detection limit of our BLI analysis (Fig. 2cExtended Data Fig.9). An enzyme-linked immunosorbent assay (ELISA) also demonstrated the strong binding between NeoCoV/PDF-2180-CoV S1-CTDs and Bat37ACE2, but not hACE2 (Fig. 2d). Notably, as the ACE2 sequences of the hosts of NeoCoV and PDF-2180-CoV are unknown, Bat37 represents the closest relative of the host of PDF-2180-CoV (Pipisrellus hesperidus) in our study. The binding affinity was further verified by competitive neutralization assays using soluble ACE2-ectodomain proteins or viral S1-CTD-hFc proteins. Again, the soluble Bat37ACE2 showed the highest activity to neutralize viral infection caused by both viruses (Fig. 2e-f). Moreover, NeoCoV-S1-CTD-hFc could also potently neutralize NeoCoV and PDF-2180-CoV infections of cells expressing Bat37ACE2 (Fig. 2g). We further demonstrated the pivotal role of S1-CTD in receptor usage by constructing chimeric viruses and testing them for altered receptor usage. As expected, batACE2 usage was changed to hDPP4 usage for a chimeric NeoCoV with CTD, but not NTD, sequences replaced by its MERS-CoV counterpart (Fig. 2h). These results confirmed that S1-CTD of NeoCoV and PDF-2180-CoV are RBDs for their species-specific interaction with ACE2.

Extended data Figure 9

Extended data Figure 9

BLI analysis of the binding kinetics of PDF-2180-CoV S1-CTD interacting with different ACE2 orthologs.

Fig. 2

Fig. 2S1-CTD of NeoCoV and PDF-2180-CoV was required for species-specific ACE2 binding.

a, Binding of NeoCoV-S1-CTD-hFc with 293T bat ACE2 cells via immunofluorescence detecting the hFc. b, Flow cytometry analysis of NeoCoV-S1-CTD-hFc binding with 293T cells expressing the indicated ACE2. The positive ratio was indicated based on the threshold (dash line). c, BLI assays analyzing the binding kinetics between NeoCoV-S1-CTD-hFc with selected ACE2-ecto proteins. d, ELISA assay showing the binding efficiency of NeoCoV and PDF-2180-CoV S1-CTD to human and Bat37ACE2-ecto proteins. e, The inhibitory activity of soluble ACE2-ecto proteins against NeoCoV infection in 293T-Bat37ACE2. f, Dose-dependent competition of NeoCoV infection by Bat37ACE2-ecto proteins in 293T-Bat37ACE2 cells. g, The inhibitory effect of NeoCoV, PDF-2180-CoV S1-CTD-hFc and MERS-CoV RBD-hFC proteins on NeoCoV infection in 293T-Bat37ACE2 cells. h, Receptor preference of chimeric viruses with S1-CTD or S1-NTD swap mutations in cells expressing the indicated receptors. Mean±SD for deg, and h, (n=3).

Structural basis of ACE2 binding

To unveil the molecular details of the virus-ACE2 binding, we then carried out structural investigations of the Bat37ACE2 in complex with the NeoCoV and PDF-2180-CoV RBD. 3D classification revealed that the NeoCoV-Bat37ACE2 complex primarily adopts a dimeric configuration with two copies of ACE2 bound to two RBDs, whereas only a monomeric conformation was observed in the PDF-2180-CoV-Bat37ACE2 complex (Figs. 3a-bExtended Data Fig. 1011). We determined the structures of these two complexes at a resolution of 3.5 Å and 3.8 Å, respectively, and performed local refinement to further improve the densities around the binding interface, enabling reliable analysis of the interaction details (Figs. 3a-bExtended Data Fig. 1213 and Table 1-2). Despite existing in different oligomeric states, the structures revealed that both NeoCoV and PDF-2180-CoV recognized the Bat37ACE2 in a very similar way. We used the NeoCoV-Bat37ACE2 structure for detailed analysis (Figs. 3a-b and Extended Data Fig. 14). Like other structures of homologs, the NeoCoV RBD structure comprises a core subdomain located far away from the engaging ACE2 and an external subdomain recognizing the receptor (Fig. 3c and Extended Data Fig. 15). The external subdomain is a strand-enriched structure with four anti-parallel β strands (β6–β9) and exposes a flat four-stranded sheet-tip for ACE2 engagement (Fig. 3c). By contrast, the MERS-CoV RBD recognizes the side surface of the DPP4 β-propeller via its four-stranded sheet-blade (Fig. 3c). The structural basis for the differences in receptor usage can be inferred from two features: i) the local configuration of the four-stranded sheet in the external domain of NeoCoV shows a conformational shift of η3 and β8 disrupting the flat sheet-face for DPP4 binding and ii) relatively longer 6-7 and 8-9 loops observed in MERS-CoV impair their binding in the shallow cavity of bat ACE2 (Fig. 3c and Extended Data Fig. 15).

Extended data Figure 10

Extended data Figure 10

Flowcharts for cryo-EM data processing of Neo-CoV RBD-Bat37ACE2 complex.

Extended data Figure 11

Extended data Figure 11

Flowcharts for cryo-EM data processing of PDF-2180-CoV RBD-Bat37ACE2 complex.

Extended Data Figure 12

Extended Data Figure 12

Resolution Estimation of the EM maps, density maps, and atomics models of NeoCoV RBD-Bat37ACE2 complex.

Extended Data Figure 13

Extended Data Figure 13

Resolution Estimation of the EM maps, density maps, and atomics models of PDF-2180-CoV RBD-Bat37ACE2 complex.

Extended Data Figure 14

Extended Data Figure 14

Superimposition of overall structures of NeoCoV RBD-Bat37ACE2 complex (red) and PDF-2018-COV RBD-Bat37ACE2 complex (bule).

Extended Data Figure 15

Extended Data Figure 15

Structures and sequence comparison of RBDs from different merbecoviruses.

Fig. 3

Fig. 3Structure of the NeoCoV RBD-Bat37ACE2 and PDF-2018-CoV RBD-Bat37ACE2 complex.

ab, Cryo-EM density map and cartoon representation of NeoCoV RBD-Bat37ACE2 complex (a) and PDF-2018CoV RBD-Bat37ACE2 complex (b). The NeoCoV RBD, PDF-2180-CoV RBD, and Bat37ACE2 were colored by red, yellow, and cyan, respectively. c, Structure comparison between NeoCoV RBD-Bat37ACE2 complex (left) and MERS-CoV RBD-hDPP4 complex (right). The NeoCoV RBD, MERS-CoV RBD, NeoCoV RBM, MERS-CoV RBM, Bat37ACE2, and hDPP4 were colored in red, light green, light yellow, gray, cyan, and blue, respectively. d, Details of the NeoCOV RBD-Bat37ACE2 complex interface. All structures are shown as ribbon with the key residues shown with sticks. The salt bridges and hydrogen bonds are presented as red and yellow dashed lines, respectively. ef, Verification of the critical residues on NeoCoV RBD affecting viral binding (e), and entry efficiency (f) in 293T-Bat37ACE2 cells. gh, Verification of the critical residues on Bat37ACE2 affecting NeoCoV RBD binding (g), and viral entry efficiency(h). Mean±SD for f (n=3) and h (n=4).

In the NeoCoV-Bat37ACE2 complex structure, relatively smaller surface areas (498 Å2 in NeoCoV RBD and 439 Å2 in Bat37ACE2) are buried by the two binding entities compared to their counterparts in the MERS-CoV-DPP4 complex (880 Å2 in MERS-CoV RBD and 812 Å2 in DPP4; 956 Å2 in SARS-CoV-2 RBD and 893 Å2 in hACE2). The NeoCoV RBD inserts into an apical depression constructed by α11, α12 helices and a loop connecting α12 and β4 of Bat37ACE2 through its four-stranded sheet tip (Fig. 3d and Extended Data Table. 2). Further examination of the binding interface revealed a group of hydrophilic residues at the site, forming a network of polar-contacts (H-bond and salt-bridge) network and hydrophobic interactions. These polar interactions are predominantly mediated by the residues N504, N506, N511, K512, and R550 from the NeoCoV RBM and residues T53, E305, T334, D338, R340 from Bat37ACE2 (Fig. 3d, Extended Data Table. 2). Notably, the methyl group from residues A509 and T510 of the NeoCoV RBM are partially involved in forming a hydrophobic pocket with residues F308, W328, L333, and I358 from Bat37ACE2 at the interface. A substitution of T510 with F in the PDF-2180-CoV RBM further improves hydrophobic interactions, which is consistent with an increased binding affinity observed for this point mutation (Figs. 3d, Extended Data Table. 2). Apart from protein-protein contacts, the glycans of bat ACE2 at positions N54 and N329 sandwich the strands (β8–β9), forming π-π interactions with W540 and hydrogen bonds with N532, G545, and R550 from the NeoCoV RBD, underpinning virus-receptor associations (Fig. 3d and Extended Data Table. 2).

The critical residues were verified by introducing mutations and testing their effect on receptor binding and viral entry. As expected, mutations N504F/N506F, N511Y, and R550N in the NeoCoV RBD, abolishing the polar-contacts or introducing steric clashes, resulted in a significant reduction of RBD binding and viral entry (Fig.3e-f). Similarly, E305K mutation in Bat37ACE2 eliminating the salt-bridge also significantly impaired the receptor function. Moreover, the loss of function effect of mutation N54A on Bat37ACE2 abolishing the N-glycosylation at residue 54 confirmed the importance of the particular protein-glycan interaction in viral-receptor recognition. In comparison, N329A abolishing the N-glycosylation at site N329, located far away from the binding interface, had no significant effect on receptor function (Fig.3g-h).

Evaluation of zoonotic potential

A major concern is whether NeoCoV and PDF-2180-CoV could jump the species barrier and infect humans. As mentioned above, NeoCoV and PDF-2180-CoV cannot efficiently interact with human ACE2. Here we first examined the molecular determinants restricting hACE2 from supporting the entry of these viruses. By comparing the binding interface of the other three hACE2-using coronaviruses, we found that the SARS-CoV, SARS-COV-2, and NL63 share similar interaction regions that barely overlapped with the region engaged by NeoCoV (Fig. 4a). Analysis of the overlapped binding interfaces reveals a commonly used hot spot around residues 329-330 (Fig.4b). Through sequences alignment and structural analysis of hACE2 and Bat37ACE2, we predicted that the inefficient use of the hACE2 for entry by the viruses could be attributed to incompatible residues located around the binding interfaces, especially the difference in sequences between residues 337-342 (Fig.4c). We replaced these residues of hACE2 with those from the Bat37ACE2 counterparts to test this hypothesis (Fig.4c-d). The substitution led to an approximately 15-fold and 30-fold increase in entry efficiency of NeoCoV and PDF-2180-CoV, respectively, confirming that this region is critical for the determination of the host range. Further fine-grained dissection revealed that N338 is the most crucial residue in restricting human receptor usage (Fig. 4e-g).

Fig. 4

Fig. 4Molecular determinants affecting hACE2 recognition by the viruses.

a, Binding modes of ACE2-adapted coronaviruses. The SARS-CoV RBD, SARS-CoV-2 RBD, NL63-CoV RBD, and NeoCoV RBD were colored in purple, light purple, green, and red, respectively. b, A common virus-binding hot spot on ACE2 for the four viruses. Per residue frequency recognized by the coronavirus RBDs were calculated and shown. c, Schematic illustration of the hACE2 swap mutants with Bat37ACE2 counterparts. de, The expression level of the hACE2 mutants by Western blot (d) and immunofluorescence (e). fg, Receptor function of hACE2 mutants evaluated by virus RBD binding assay (f) and pseudovirus entry assay (g). h, Molecular dynamics (MD) analysis of the effect of critical residue variations on the interaction between NeoCoV and Bat37ACE2 by mCSM-PPI2. i, Structure of NeoCoV RBD-hACE2 complex modeling by superposition in COOT. The NeoCoV RBD and hACE2 were colored in red and sky blue, respectively. Details of the NeoCoV RBD key mutation T510F was shown. All structures are presented as ribbon with the key residues shown with sticks. j-k, The effect of NeoCoV and PDF-2180-CoV RBM mutations on hACE2 fitness as demonstrated by binding (j) and entry efficiency (k) on 293T-hACE2 and 293T-Bat37ACE2 cells. l, hACE2 dependent entry of NeoCoV-T510F in Caco2 cells in the presence of 50μg/ml of Anti-ACE2 (H11B11) or Anti-VSVG (I1). m, Neutralizing activity of SARS-CoV-2 vaccinated sera against the infection by SARS-CoV-2, NeoCoV, and PDF-2180-CoV. n, Neutralizing activity of MERS-RBD targeting nanobodies against the infections by MERS-CoV, NeoCoV, and PDF-2180-CoV. Mean± SD for g,k-ng(n=4),kl (n=3), gmn (n=10).

We further assessed the zoonotic potential of NeoCoV and PDF-2180-CoV by identifying the molecular determinants of viral RBM, which might allow cross-species transmission through engaging hACE2. After meticulously examining the critical residues based on the complex structures and computational prediction tool mCSM-PPI233(Fig. 4h, Extended Data Table. 4), we predicted increasing hydrophobicity around the residue T510 of NeoCoV might enhance the virus-receptor interaction on hACE2 (Fig. 4 i). Interestingly, the PDF-2180-CoV already has an F511 (corresponding to site 510 of NeoCoV), which is consistent with its slightly higher affinity to human ACE2 (Extended Data Fig.16). As expected, T510F substitutions in NeoCoV remarkably increased its binding affinity with hACE2 (KD=16.9 nM) and a significant gain of infectivity in 293T-hACE2 cells (Fig. 4 j-k, Extended Data Fig.17-18). However, PDF-2180-CoV showed much lower efficiency in using hACE2 than NeoCoV-T510F, indicating other unfavorable residues are restricting its efficient interaction with hACE2. Indeed, a G to A (corresponding to A509 in NeoCoV) mutation in site 510, increasing the local hydrophobicity, partially restored its affinity to hACE2 (Fig.4 j-k). In addition, the NeoCoV-T510F can enter the human colon cell line Caco-2 with much higher efficiency than wild-type NeoCoV. It enters the Caco-2 exclusively through ACE2 as the infection can be neutralized by an ACE2-targeting neutralizing antibody H11B1134 (Fig. 4l). Humoral immunity triggered by prior infection or vaccination of other coronaviruses might be inadequate to protect humans from NeoCoV and PDF-2180-CoV infections because neither SARS-CoV-2 anti-sera nor ten tested anti-MERS-CoV nanobodies can cross-inhibit the infection caused by these two viruses35. (Fig. 4m-n).

Extended Data Figure 16

Extended Data Figure 16

Comparison of the binding affinity of NeoCoV and PDF-2180-CoV RBD with hACE2 using SARS-CoV-2 RBD as a positive control.

Extended Data Figure 17

Extended Data Figure 17

Expression level of the NeoCoV and PDF-2180-CoV spike proteins and their mutants.

Extended Data Figure 18

Extended Data Figure 18

BLI analysis of the binding kinetics of NeoCoV S1-CTD WT and T510F interacting with human ACE2.


The lack of knowledge of the receptors of bat coronaviruses has greatly limited our understanding of these high-risk pathogens. Our study provided evidence that the relatives of potential MERS-CoV ancestors like NeoCoV and PDF-2180-CoV engage bat ACE2 for efficient cellular entry. However, HKU5-CoV and EriCoV seem not to use bat DPP4 or hedgehog ACE2 for entry, highlighting the complexity of coronaviruses receptor utilization. It was unexpected that NeoCoV and PDF-2180-CoV use ACE2 rather than DPP4 as their entry receptors since their RBD core structures resemble MERS-CoV more than other ACE2-using viruses (Fig. 4aExtended Data Fig. 15).

Different receptor usage can affect the transmission rate of the viruses. Although it remains unclear whether ACE2 usage out-weight DPP4 usage for more efficient transmission, MERS-CoV appears to have lower transmissibility with an estimated R0 around 0.69. Comparatively, the ACE2 usage has been approved able to achieve high transmissibility. The SARS-CoV-2 estimated R0 is around 2.5 for the original stain, 5.08 for the delta variant, and even higher for the omicron variant3638. This unexpected ACE2 usage of these MERS-CoV close relatives highlights a latent biosafety risk, considering a combination of two potentially damaging features of high fatality observed for MERS-CoV and the high transmission rate noted for SARS-CoV-2. Furthermore, our studies show that the current COVID-19 vaccinations are inadequate to protect humans from any eventuality of the infections caused by these viruses.

Many sarbecoviruses, alpha-CoV NL63, and a group of merbecoviruses reported in this study share ACE2 for cellular entry. Our structural analysis indicates NeoCoV and PDF-2180-CoV bind to an apical side surface of ACE2, which is different from the surface engaged by other ACE2-using coronaviruses (Fig.4a). The interaction is featured by inter-molecular protein-glycan bonds formed by the glycosylation at N54, which is not found in RBD-receptor interactions of other coronaviruses. The different interaction modes of the three ACE2-using coronaviruses indicate a history of multiple independent receptor acquisition events during evolution22. The evolutionary advantage of ACE2 usage in different CoVs remains enigmatic.

Our results support the previous hypothesis that the origin of MERS-CoV might be a result of an intra-spike recombination event between a NeoCoV like virus and a DPP4-using virus26. RNA recombination can occur during the co-infection of different coronaviruses, giving rise to a new virus with different receptor usage and host tropisms3940. It remains unclear whether the event took place in bats or camels, and where the host switching happened. Although bat merbecoviruses are geographically widespread, the two known ACE2-using merbecoviruses are inhabited in Africa. Moreover, most camels in the Arabian Peninsula showing serological evidence of previous MERS-CoV infection are imported from the Greater Horn of Africa with several Neoromicia species41. Considering both viruses are inefficient in infecting human cells in their current form, the acquisition of the hDPP4 binding domain would be a critical event driving the emergence of MERS-CoV. Further studies will be necessary to obtain more evidence about the origin of MERS-CoV.

The host range determinants on ACE2 are barriers for cross-species transmission of these viruses. Our results show NeoCoV and PDF-2180-CoV favor ACE2 from bats of the Yangochiroptera group, especially vesper bats (Vespertilionidae), where their host belongs to, but not ACE2 orthologs from bats of the Yinpterochiroptera group. Interestingly, most merbecoviruses were found in species belonging to the Vespertilionidae group, a highly diverse and widely distributed family9. Although the two viruses could not use hACE2 efficiently, our study also reveals that single residue substitution increasing local hydrophobicity around site 510 could enhance their affinity for hACE2 and enable them to infect human cells expressing ACE2. Considering the extensive mutations in the RBD regions of the SARS-CoV-2 variants, especially the heavily mutated omicron variant, these viruses may hold a latent potential to infect humans through further adaptation via antigenic drift4243. It is also very likely that their relatives with human emergence potential are circulating somewhere in nature.

Overall, we identified ACE2 as a long-sought functional receptor of the potential MERS-CoV ancestors in bats, facilitating the in-depth research of these important viruses with zoonotic emergence risks. Our study adds to the knowledge about the complex receptor usage of coronaviruses, highlighting the importance of surveillance and research on these viruses to prepare for potential outbreaks in the future.

Supplementary Information


Receptor and virus sequences

The acquisition of sequences of 46 bat ACE2 and hACE were described in our previous study31. The five bat DPP4 and hDPP4 sequences were directly retrieved from the GenBank database (human DPP4, NM_001935.3; Bat37, Pipistrellus pipistrellus, KC249974.1) or extracted from whole genome sequence assemblies of the bat species retrieved from the GenBank database (Bat25, Sturnira hondurensis, GCA_014824575.2; Bat29, Mormoops blainvillei, GCA_004026545.1; Bat36, Aeorestes cinereus, GCA_011751065.1; Bat40, Antrozous pallidus, GCA_007922775.1). The whole genome sequences of different coronaviruses were retrieved from the GenBank database. The accession numbers are as follows: MERS-CoV (JX869059.2), Camel MERS-CoV KFU-HKU 19Dam (KJ650296.1), HKU4 (NC_009019.1), HKU5 (NC_009020.1), ErinaceusCoV/HKU31 strain F6 (MK907286.1), NeoCoV (KC869678.4), PDF-2180-CoV (NC_034440.1), ErinaceusCoV/2012-174 (NC_039207.1), BtVs-BetaCoV/SC2013 (KJ473821.1), BatCoV/H.savii/Italy (MG596802.1), BatCoV HKU25 (KX442564.1), BatCoV ZC45(MG772933.1) and SARS-CoV-2 (NC_045512.2), NL63 (JX504050.1) 229E (MT797634.1).

All gene sequences used in this study were commercially synthesized by Genewiz. The sources, accession numbers, and sequences of the receptors and viruses were summarized in Supplementary Table 1.

SARS-CoV-2 anti-sera collection

All the vaccinated sera were collected from volunteers at about 21 days post the third dose of the WHO-approved inactivated SARS-COV-2 vaccine (CorovaVac, Sinovac, China). All volunteers were provided informed written consent forms, and the whole study was conducted following the requirements of Good Clinical Practice of China.

Bioinformatic analysis

Protein sequence alignment was performed using the MUSCLE algorithm by MEGA-X software (version 10.1.8). For phylogenetic analysis, nucleotide or protein sequences of the viruses were first aligned using the Clustal W and the MUSCLE algorithm, respectively. Then, the phylogenetic trees were generated using the maximal likelihood method in MEGA-X (1000 Bootstraps). The model and the other parameters used for phylogenetic analysis were applied following the recommendations after finding best DNA/Protein Models by the software. The nucleotide similarity of coronaviruses was analyzed by SimPlot software (version 3.5.1) with a slide windows size of 1000 nucleotides and a step size of 100 nucleotides using gap-stripped alignments and the Kimura (2-parameter) distance model.


Human codon-optimized sequences of various ACE2 or DPP4 orthologs and their mutants were cloned into a lentiviral transfer vector (pLVX-IRES-puro) with a C-terminal 3×Flag tag (DYKDHD-G-DYKDHD-I-DYKDDDDK). The DNA sequences of human codon-optimized NeoCoV S protein (AGY29650.2), PDF-2180-CoV S protein (YP_009361857.1), HKU4-CoV S protein (YP_001039953.1), HKU5-CoV S protein (YP_001039962.1), HKU31 S protein (QGA70692.1), SARS-CoV-2 (YP_009724390.1), and MERS-CoV S protein (YP_009047204.1) were cloned into the pCAGGS vector with a C-terminal 13-15-amino acids deletion (corresponding to 18 amino-acids in SARS-CoV-2) or replacement by an HA tag (YPYDVPDYA) for higher VSV pseudotyping efficiency44. The plasmids expressing coronavirus RBD-IgG-hFc fusion proteins were generated by inserting the coding sequences of NeoCoV RBD (aa380-585), PDF-2180-CoV RBD (aa381-586), HKU4-CoV (aa382-593), HKU5-CoV RBD (aa385-586), HKU31-CoV RBD (aa366-575), SARS-CoV-2 RBD (aa331-524) and MERS-CoV RBD (aa377-588) into the pCAGGS vector with an N-terminal CD5 secretion leading sequence (MPMGSLQPLATLYLLGMLVASVL). The plasmids expressing soluble bat ACE2 and DPP4 proteins were constructed by inserting the ectodomain coding sequences into the pCAGGS vector with N-terminal CD5 leader sequence and C-terminal twin-strep tag and 3×Flag tag tandem sequences (WSHPQFEKGGGSGGGSGGSAWSHPQFEK-GGGRS-DYKDHDGDYKDHDIDYKDDDDK).

Virus spike proteins or receptor-related mutants or chimeras were generated by overlapping PCR. For Dual split protein (DSP) based cell-cell fusion assay, the dual reporter split proteins were expressed by pLVX-IRES-puro vector expressing the RLucaa1-155-GFP1-7(aa1-157) and GFP8-11(aa158-231)-RLuc-aa156-311 plasmids, which were constructed in the lab based on a previously study3245. The plasmids expressing the codon-optimized anti-ACE2 antibody (H11B11; GenBank accession codes MZ514137 and MZ514138) were constructed by inserting the heavy-chain and light-chain coding sequences into the pCAGGS vector with N-terminal CD5 leader sequences, respectively34. For anti-MERS-CoV nanobody-hFc fusion proteins, nanobody coding sequences were synthesized and cloned into the pCAGGS vector with N-terminal CD5 leader sequences and C-terminal hFc tags 35.

Protein expression and purification

The RBD-hFc (S1-CTD-hFc) fusion proteins of SARS-CoV-2, MERS-CoV, HKU4-CoV, HKU5-CoV, HKU31-CoV, NeoCoV, and PDF-2180-CoV, and the soluble ACE2 proteins of human, Bat25, Bat29, Bat36, Bat37, Bat38, and Bat40 were expressed by 293T by transfecting the corresponding plasmids by GeneTwin reagent (Biomed, TG101-01) following the manufacturers’ instructions. Four hrs post-transfection, the culture medium of the transfected cells was replenished by SMM 293-TII Expression Medium (Sino Biological, M293TII). The supernatant of the culture medium containing the proteins was collected every 2-3 days. The recombinant RBD-hFc proteins were captured by Pierce Protein A/G Plus Agarose (Thermo Scientific, 20424), washed by wash buffer W (100 mM Tris/HCl, pH 8.0, 150 mM NaCl, 1mM EDTA), eluted with pH 3.0 Glycine buffer (100mM in H2O), and then immediately balanced by UltraPure 1M Tris-HCI, pH 8.0 (15568025, Thermo Scientific). The twin-strep tag containing proteins were captured by Strep-Tactin XT 4Flow high capacity resin (IBA, 2-5030-002), washed by buffer W, and eluted with buffer BXT (100 mM Tris/HCl, pH 8.0, 150 mM NaCl, 1mM EDTA, 50mM biotin). The eluted proteins can be concentrated and buffer-changed to PBS through ultra-filtration. Protein concentrations were determined by Omni-Easy Instant BCA Protein Assay Kit (Epizyme, ZJ102). The purified proteins were aliquoted and stored at -80℃. For Cryo-EM analysis, NeoCoV RBD (aa380-588), PDF-2018-CoV RBD (381-589), and Bat37ACE2 (aa21-730) were synthesized and subcloned into the vector pCAGGS with a C-terminal twin-strep tag. Briefly, these proteins were expressed by transient transfection of 500 ml HEK Expi 293F cells (Gibco, Thermo Fisher, A14527) using Polyethylenimine Max Mw 40,000 (polysciences). The resulting protein samples were further purified by size-exclusion chromatography using a Superdex 75 10/300 Increase column (GE Healthcare) or a Superdex 200 10/300 Increase column (GE Healthcare) in 20mM HEPES, 100 mM NaCl, pH 7.5. For RBD-receptor complex (NeoCoV RBD-Bat37ACE2 / PDF-2180-CoV RBD-Bat37ACE2), NeoCoV RBD or PDF-2180-CoV RBD was mixed with Bat37ACE2 at the ratio of 1.2 :1, incubated for 30 mins on ice. The mixture was then subjected to gel filtration chromatography. Fractions containing the complex were collected and concentrated to 2 mg/ml.

Cell culture

293T (CRL-3216), VERO E6 cells (CRL-1586), A549 (CCL-185), BHK-21 (CCL-10), and Huh-7 (PTA-4583), Caco2 (HTB-37) and the epithelial bat cell line Tb 1 Lu (CCL-88) were purchased from American Type Culture Collection (ATCC) and cultured in Dulbecco’s Modified Eagle Medium, (DMEM, Monad, China) supplemented with 10% fetal bovine serum (FBS), 2.0 mM of L-glutamine, 110 mg/L of sodium pyruvate and 4.5 g/L of D-glucose. An I1-Hybridoma (CRL-2700) cell line secreting a neutralizing mouse monoclonal antibody against the VSV glycoprotein (VSVG) was cultured in Minimum Essential Medium with Earles’s balances salts and 2.0mM of L-glutamine (Gibico) and 10% FBS. All cells were cultures at 37℃ in 5% CO2 with the regular passage of every 2-3 days. 293T stable cell lines overexpressing ACE2 or DPP4 orthologs were maintained in a growth medium supplemented with 1 μg/ml of puromycin.

Stable cell line generation

Stable cell lines overexpressing ACE2 or DPP4 orthologs were generated by lentivirus transduction and antibiotic selection. Specifically, the lentivirus carrying the target gene was produced by cotransfection of lentiviral transfer vector (pLVX-EF1a-Puro, Genewiz) and packaging plasmids pMD2G (Addgene, plasmid no.12259) and psPAX2 (Addgene, plasmid no.12260) into 293T cells through Lip2000 Transfection Reagent (Biosharp, BL623B). The lentivirus-containing supernatant was collected and pooled at 24 and 48 hrs post-transfection. 293T cells were transduced by the lentivirus after 16 hrs in the presence of 8 μg/ml polybrene. Stable cells were selected and maintained in the growth medium with puromycin (1-2 μg/ml). Cells selected for at least ten days were considered stable cell lines and used in different experiments.

Cryo-EM sample preparation and data collection

For Cryo-EM sample preparation, the NeoCoV RBD-Bat37ACE2 or PDF-2018-CoV RBD-Bat37ACE2 complex was diluted to 0.5 mg/ml. Holy-carbon gold grid (Cflat R1.2/1.3 mesh 300) were freshly glow-discharged with a Solarus 950 plasma cleaner (Gatan) for 30s. A 3 μL aliquot of the mixture complex was transferred onto the grids, blotted with filter paper at 16℃ and 100% humidity, and plunged into the ethane using a Vitrobot Mark IV (FEI). For these complexes, micrographs were collected at 300 kV using a Titan Krios microscope (Thermo Fisher), equipped with a K2 detector (Gatan, Pleasanton, CA), using SerialEM automated data collection software. Movies (32 frames, each 0.2 s, total dose 60e−Å−2) were recorded at a final pixel size of 0.82 Å with a defocus of between -1.2 and -2.0 μm.

Image processing

For NeoCoV RBD-Bat37ACE2 complex, a total of 4,234 micrographs were recorded. For PDF-2018-CoV RBD-Bat37ACE2 complex, a total of 3,298 micrographs were recorded. Both data sets were similarly processed. Firstly, the raw data were processed by MotionCor2, which were aligned and averaged into motion-corrected summed images. Then, the defocus value for each micrograph was determined using Gctf. Next, particles were picked and extracted for two-dimensional alignment. The well-defined partial particles were selected for initial model reconstruction in Relion46. The initial model was used as a reference for three-dimensional classification. After the refinement and post-processing, the overall resolution of PDF-2018-CoV RBD-Bat37ACE2 complex was up to 3.8Å based on the gold-standard Fourier shell correlation (threshold = 0.143) 47. For the NeoCoV RBD-Bat37ACE2 complex, the C2 symmetry was expanded before the 3D refinement. Finally, the resolution of the NeoCoV RBD-Bat37ACE2 complex was up to 3.5Å. The quality of the local resolution was evaluated by ResMap48.

Model building and refinement

The NeoCoV RBD-Bat37ACE2 complex structures were manually built into the refined maps in COOT47. The atomic models were further refined by positional and B-factor refinement in real space using Phenix48. For the PDF-2018-CoV RBD-Bat37ACE2 complex model building, the refinement NeoCoV RBD-Bat37ACE2 complex structures were manually docked into the refined maps using UCSF Chimera and further corrected manually by real-space refinement in COOT. As the same, the atomic models were further refined by using Phenix. Validation of the final model was performed with Molprobity48. The data sets and refinement statistics are shown in Extended Data table 1.

Immunofluorescence assay

The expression levels of ACE2 or DPP4 receptors were evaluated by immunofluorescence assay detecting the C-terminal 3×FLAG-tags. The cells expressing the receptors were seeded in the 96-well plate (poly-lysine pretreated plates for 293T based cells) at a cell density of 1∼5×105/ml (100 μl per well) and cultured for 24 hrs. Cells were fixed with 100% methanol at room temperature for 10 mins, and then incubated with a mouse monoclonal antibody (M2) targeting the FLAG-tag (Sigma-Aldrich, F1804) diluted in 1% BSA/PBS at 37℃ for 1 hour. After one wash with PBS, cells were incubated with 2 μg/ml of the Alexa Fluor 594-conjugated goat anti-mouse IgG (Thermo Fisher Scientific, A32742) diluted in 1% BSA/PBS at room temperature for 1 hour. The nucleus was stained blue with Hoechst 33342 (1:5,000 dilution in PBS). Images were captured with a fluorescence microscope (Mshot, MI52-N).

Pseudovirus production and titration

Coronavirus spike protein pseudotyped viruses (CoV-psV) were packaged according to a previously described protocol based on a replication-deficient VSV-based rhabdoviral pseudotyping system (VSV-dG). The VSV-G glycoprotein-deficient VSV coexpressing GFP and firefly luciferase (VSV-dG-GFP-fLuc) was rescued by a reverse genetics system in the lab and helper plasmids from Karafast. For CoV-psV production, 293T or Vero E6 cells were transfected with the plasmids overexpressing the coronavirus spike proteins through the Lip2000 Transfection Reagent (Biosharp, BL623B). After 36 hrs, the transfected cells were transduced with VSV-dG-GFP-fLuc diluted in DMEM for 4 hrs at 37℃ with a 50 % tissue culture infectious dose (TCID50) of 1×106 TCID50/ml. Transduced cells were washed once with DMEM and then incubated with culture medium and I1-hybridoma-cultured supernatant (1:10 dilution) containing VSV neutralizing antibody to eliminate the infectivity of the residual input viruses. The CoV-psV-containing supernatants were collected at 24 hrs after the medium change, clarified at 4,000 rpm for 5 mins, aliquoted, and stored at -80℃. The TCID50 of pseudovirus was determined by a serial-dilution based infection assay on 293T-bat40ACE2 cells for NeoCoV and PDF-2180-CoV or 293T-hDpp4 cells for MERS-CoV and HKU4-CoV. The TCID50 was calculated according to the Reed-Muench method 4950. The relative luminescence unit (RLU) value ≥ 1000 is considered positive. The viral titer (genome equivalents) of HKU5-COV and HKU31-CoV without an ideal infection system was determined by quantitative PCR with reverse transcription (RT–qPCR). The RNA copies in the virus-containing supernatant were detected using primers in the VSV-L gene sequences (VSV-L-F: 5’-TTCCGAGTTATGGGCCAGTT-3’; VSVL-R: 5’-TTTGCCGTAGACCTTCCAGT-3’).

Pseudovirus entry assay

Cells for infection were trypsinized and incubated with different pseudoviruses (1×105 TCID50/well, or same genome equivalent) in a 96-well plate (5×104 /well) to allow attachment and viral entry simultaneously. For TPCK-trypsin treatment for infection boosting, NeoCoV and PDF-2180-CoV pseudovirus in serum-free DMEM were incubated with 100 μg/ml TPCK-treated trypsin (Sigma-Aldrich, T8802) for 10 mins at 25℃, and then treated with 100 μg/ml soybean trypsin inhibitor (Sigma-Aldrich, T6414) in DMEM+10% FBS to stop the proteolysis. At 16 hours post-infection (hpi), GFP images of infected cells were acquired with a fluorescence microscope (Mshot, MI52-N), and intracellular luciferase activity was determined by a Bright-Glo Luciferase Assay Kit (Promega, E2620) and measured with a SpectraMax iD3 Multi-well Luminometer (Molecular Devices) or a GloMax 20/20 Luminometer (Promega).

Pseudovirus neutralization Assay

For antibody neutralization assays, the viruses (2×105 TCID50/well) were incubated with the sera (50-fold diluted) or 10 μg/ml MERS-specific nanobodies at 37℃ for 30 mins, and then mixed with trypsinized BHK-21-Bat37ACE2 cells with the density of 2×104/well. After 16 hrs, the medium of the infected cells was removed, and the cells were lysed with 1×Bright-Glo Luciferase Assay reagent (Promega) for chemiluminescence detection with a SpectraMax iD3 Multi-well Luminometer (Molecular devices).

Western blot

After one wash with PBS, the cells were lysed by 2% TritonX-100/PBS containing 1mM fresh prepared PMSF (Beyotime, ST506) on ice for 10 mins. Then cell lysate was clarified by 12,000 rpm centrifugation at 4℃ for 5 mins, mixed with SDS loading buffer, and then incubated at 95 °C for 5 mins. After SDS-PAGE electrophoresis and PVDF membrane transfer, the membrane was blocked with 5% skim milk/PBST at room temperature for one hour, incubated with primary antibodies against Flag (Sigma, F1804), HA (MBL, M180-3), or glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (AntGene, ANT011) at 1:10000 dilution in 1% milk/PBS overnight on a shaker at 4℃. After extensive wash, the membrane was incubated with the Horseradish peroxidase (HRP)-conjugated secondary antibody AffiniPure Goat Anti-Mouse IgG (H+L) (Jackson Immuno Reseach, 115-035-003) in 1% skim milk in PBST, and incubated for one hour. The blots were visualized using Omni-ECL Femto Light Chemiluminescence Kit (EpiZyme, SQ201) by ChemiDoc MP (Bio-Rad).

Coronavirus RBD-hFc live-cell binding assay

Recombinant coronavirus RBD-hFc proteins (1-16 μg/ml) were diluted in DMEM and then incubated with the cells for one hour at 37℃. Cells were washed once with DMEM and then incubated with 2 μg/ml of Alexa Fluor 488-conjugated goat anti-human IgG (Thermo Fisher Scientific; A11013) diluted in Hanks’ Balanced Salt Solution (HBSS) with 1% BSA for 1 hour at 37 ℃. Cells were washed twice with PBS and incubated with Hoechst 33342 (1:5,000 dilution in HBSS) for nucleus staining. Images were captured with a fluorescence microscope (MI52-N). For flow cytometry analysis, cells were detached by 5mM of EDTA/PBS and analyzed with a CytoFLEX Flow Cytometer (Beckman).

Biolayer interferometry (BLI) binding assay

The protein binding affinities were determined by BLI assays performed on an Octet RED96 instrument (Molecular Devices). Briefly, 20 μg/mL Human Fc-tagged RBD-hFc recombinant proteins were loaded onto a Protein A (ProA) biosensors (ForteBio, 18-5010) for 30s. The loaded biosensors were then dipped into the kinetic buffer (PBST) for 90s to wash out unbound RBD-hFc proteins. Subsequently, the biosensors were dipped into the kinetic buffer containing soluble ACE2 with concentrations ranging from 0 to 500 nM for 120s to record association kinetic and then dipped into kinetics buffer for 300s to record dissociation kinetics. Kinetic buffer without ACE2 was used to define the background. The corresponding binding affinity (KD) was calculated with Octet Data Analysis software using curve-fitting kinetic analysis or steady-state analysis with global fitting.

Enzyme-linked immunosorbent assay (ELISA)

To evaluate the binding between viral RBD and the ACE2 in vitro, 96 well Immuno-plate were coated with ACE2 soluble proteins at 27 μg/ml in BSA/PBS (100 μl/well) overnight at 4℃. After three wash by PBS containing 0.1% Tween-20 (PBST), the wells were blocked by 3% skim milk/PBS at 37℃ for 2 hrs. Next, varying concentrations of RBD-hFc proteins (1-9 μg/ml) diluted in 3% milk/PBST were added to the wells and incubated for one hour at 37℃. After extensive wash, the wells were incubated with 1:2000 diluted HRP-conjugated goat anti-human Fc antibody (Sigma, T8802) in PBS for one hour. Finally, the substrate solution (Solarbio, PR1210) was added to the plates, and the absorbance at 450nm was measured with a SpectraMax iD3 Multi-well Luminometer (Molecular Devices).

Cell-cell fusion assay

Cell-cell fusion assay based on Dual Split proteins (DSP) was conducted on BHK-21 cells stably expressing different receptors32. The cells were separately transfected with Spike and RLucaa1-155-GFP1-10(aa1-157) expressing plasmids, and Spike and GFP11(aa158-231) RLuc-Caa156-311 expressing plasmids, respectively. At 12 hrs after transfection, the cells were trypsinized and mixed into a 96-well plate at 8×104/well. At 26 hrs post-transfection, cells were washed by DMEM once and then incubated with DMEM with or without 12.5 μg/ml TPCK-trypsin for 25 mins at RT. Five hrs after treatment, the nucleus was stained blue with Hoechst 33342 (1:5,000 dilution in HBSS) for 30min at 37℃. GFP images were then captured with a fluorescence microscope (MI52-N; Mshot). For live-cell luciferase assay, the EnduRen live cell substrate (Promega, E6481) was added to the cells (a final concentration of 30 μM in DMEM) for at least 1 hour before detection by a GloMax 20/20 Luminometer (Promega).

Statistical Analysis

Most experiments were repeated 2∼5 times with 3-4 biological repeats, each yielding similar results. Data are presented as MEAN±SD or MEAN±SEM as specified in the figure legends. All statistical analyses were conducted using GraphPad Prism 8. Differences between independent samples were evaluated by unpaired two-tailed t-tests; Differences between two related samples were evaluated by paired two-tailed t-tests. P<0.05 was considered significant. * p<0.05, ** p <0.01, *** p <0.005, and **** p <0.001.

Author contributions

H.Y. and X.X.W. conceived and designed the study. Q.X., L.C., C.B.M., C.L., J.Y.S., P.L., and F.T. performed the experiments. Q.X, L.C, C.B.M, C.L, C.F.Z., H.Y, and X.X.W analyzed the data. H.Y., X.X.W., Q.X, L.C, C.B.M, and C.L interpreted the results. H.Y and X.X.W wrote the initial drafts of the manuscript. H.Y., X.X.W., H.Y., X.X.W., L.C., and Q.X. revised the manuscript. C.B.M, C.L., P. L., M.X.G., C.L.W, L.L.S, F.T. M.L.H, J.L., C.S., Y.C., H.B.Z., and K.L. commented on the manuscript.

Competing interests

The authors declare no competing interests.

Data availability

The cryo-EM maps have been deposited at the Electron Microscopy Data Bank ( and are available under accession numbers: EMD-32686 (NeoCoV RBD-Bat37ACE2 complex) and EMD-32693 (PDF-2180-CoV RBD-Bat37ACE2 complex). Atomic models corresponding to EMD-32686, EMD-32693 have been deposited in the Protein Data Bank ( and are available under accession numbers, PDB ID 7WPO, PDB ID 7WPZ, respectively. The authors declare that all other data supporting the findings of this study are available with the paper and its supplementary information files.

Additional Information

Supplementary Information is available for this paper.

Correspondence and requests for materials should be addressed to H.Y. (huanyan{at}

Why COVID-19 Is Here to Stay, and Why You Shouldn’t Worry About It

Authors: August 17, 2021 by Philippe Lemoine

As many countries are going through another wave of infections, including some where the vast majority of the population has been vaccinated, many are starting to despair that we’ll never see the end of the pandemic. In this post, I will argue that, on the contrary, not only is the pandemic already on its way out, but the virus will be relatively harmless after it has become endemic. This is going to happen not because the SARS-CoV-2 will become intrinsically less dangerous, although it might, but rather because what made the virus so dangerous was that nobody had immunity against it, so once it has become endemic it will infect fewer people and even those who end up infected will be much less at risk. Moreover, I will explain that, despite widespread anxiety about the emergence of new variants and the danger of immune evasion, the fact that SARS-CoV-2 is mutating will not prevent this outcome because of the way immunity works. Finally, I will argue that, although some people are calling to pursue the eradication of SARS-CoV-2 (as we have done with smallpox), we almost certainly couldn’t eradicate it even if we wanted to and that even if we could it wouldn’t be worth it.

SARS-CoV-2 is going to become mostly harmless

You may have heard that, as they evolve, viruses necessarily become less lethal because it makes no evolutionary sense for them to kill the hosts on which they depend for their survival and reproduction, but this is a myth and it’s not what I’m saying. The claim I’m making is based on a much sounder and more straightforward argument. But to understand why it’s true, you first have to understand that, as the virologist Dylan H. Morris explained in a great essay, what made SARS-CoV-2 so dangerous is not so much its intrinsic characteristics but the fact that it was novel, which means that nobody in the population had immunity against it.1 Indeed, while the debate about whether SARS-CoV-2 was “worse than the flu” or “just like the flu” dominated the early phase of the pandemic and to some extent is still ongoing, this question is not even well-posed because there is no such thing as the dangerousness of a virus simpliciter. The dangerousness of a virus is always relative to a particular context. This should be obvious if you consider the impact that the availability of effective treatments can have on how much damage a virus does. For instance, HIV was initially devastating because it invariably killed the people it had infected within a few years after symptoms onset, but thanks to the development of effective treatments infected people can now live a relatively normal life, at least in the developed world where people can afford such treatments. HIV has not become any less intrinsically dangerous, but it’s undoubtedly far less dangerous in societies where effective treatments are easily available.

In the case of SARS-CoV-2 though, the key contextual factor is what proportion of the population has immunity against it. Immediately after the emergence of the virus, the population was immunologically naive, which means that nobody had immunity against it beyond that conferred by the innate immune system against any pathogen.2 The amount of damage and disruption caused by a virus can differ wildly depending on whether the population in which it’s introduced is immunologically naive to it. This is because, when nobody in the population has immunity, 1) the virus spreads more easily and infects more people because everyone is susceptible to infection and 2) when people get infected they have a much higher chance of developing a severe form of the disease because their immune system does not yet have any weapons specifically tailored to fight this virus. So the same virus, with exactly the same intrinsic properties, can do vastly more damage in a population that is immunologically naive than in a population where everyone has immunity against it, either because they have previously been infected or because they have been vaccinated. That’s one of the reasons why entire indigenous communities in America were almost completely wiped out by pathogens brought by Europeans, even though people in Europe had been living with the same pathogens for centuries or even millennia and, while they were not by any means harmless to them, they didn’t threaten their existence.3

As more people get infected by SARS-CoV-2 or vaccinated against it, the virus will become endemic and continue to circulate following a seasonal pattern (because immunity whether acquired naturally or through vaccination is not 100% effective against infection and wanes over time), but the number of people who end up at the hospital or dead because of it will gradually decrease until we reach a sort of equilibrium.4 In some places, especially in developed countries where the vast majority of the population has already been vaccinated, this process is already well under way and you can see it on a simple chart:

This is probably also true in other regions of the world, where infections usually played a bigger role than vaccination, and eventually it will be true everywhere, including in places such as Australia and New Zealand that have mostly been able to keep the virus out so far but won’t be able to do it forever as the virus becomes endemic in the rest of the world. Obviously, it’s preferable to build up immunity through vaccination rather than infections, but eventually everyone will get to the same point. The virus will become endemic and virtually everyone will have some immunity against it, at which point it will be relatively harmless and no longer cause the kind of damage we have seen during the pandemic. The whole process will take a few years, but again it’s already well under way in some places and this is where everyone is headed, dreams of eradication notwithstanding.

In order to understand how this transition takes place and why the virus will be mostly harmless once it has become endemic and the population is no longer immunologically naive to it, I think it’s useful to work through a simple numerical example, which doesn’t purport to be a quantitatively accurate description of what is going to happen but can illustrate the process qualitatively and help people to grasp the underlying logic. Let’s consider a population of 10 million with 3 million people between 0 and 18 years old, 4 million people between 19 and 59 people and 3 million people 60 and over. Suppose that in that population a virus kills 0.05% of the people between 0 and 18 years old it infects, 0.2% of the people between 19 and 59 and 1% of the people 60 and over. Let’s also assume that, during the first year after it’s introduced in the population (which is initially immunologically naive to it), 25% of the population is infected and this doesn’t vary by age. In that case, we expect that during that year it will kill 25% * 3,000,000 * 0.05% = 375 people between 0 and 18 years old, 25% * 4,000,000 * 0.2% = 2,000 people between 19 and 59 years old and 25% * 3,000,000 * 1% = 7,500 people 60 and over died, for a total death toll of 9,875. That is a pretty sizable mortality, comparable to what many countries have seen during the first year of the COVID-19 pandemic, which given the assumptions I made should not come as a surprise to anyone.

Now let’s consider the same virus but in another population of 10 million or in the same population at a subsequent date where, because of vaccination and infections, the prevalence of immunity is only 25% among people between 0 and 18 years old, but 100% in the rest of the population.5 Let’s further assume that immunity is 80% effective against death and that effectiveness doesn’t vary with age, but that it’s not as effective against infection. Still, it offers some protection against infection, so the virus doesn’t spread as much as in a population where there is no immunity whatsoever. Let’s be more specific and assume that, over the course of a year, 15% of people between 0 and 18 years old, 10% of people between 19 and 59 years old and 5% of people 60 and over get infected.6 Finally, let’s assume that 75% of the children who get infected had no prior immunity, while 100% of the adults who get infected had some immunity since we have assumed that except for children everyone had immunity. In that case, we expect that 15% * 3,000,000 * (75% * 0.05% + 25% * (1 – 80%) * 0.05%) = 180 people between 0 and 18 years old, 10% * 4,000,000 * (1 – 80%) * 0.2% = 160 people between 19 and 59 years old and 5% * 3,000,000 * (1 – 80%) * 1% = 300 people 60 and over died, for a total death toll of 640. That’s only ~6.5% of the death toll in the immunologically naive population, yet by assumption the virus is exactly the same as before, but the population is no longer immunologically naive and this changes everything. For various reasons I won’t get into here, reality is far more complicated than this simplistic model, but it’s good enough to grasp the basic logic that governs the transition toward endemicity and get a pretty accurate idea of what is going to happen.7

Sooner or later, as a result of both infections and vaccination, virtually everyone will develop some immunity against SARS-CoV-2. This immunity will not always prevent infection, but even if someone who has been vaccinated or previously infected gets reinfected, they will typically develop only a mild form of the disease, because while still not perfect the protection against severe illness that immunity confers is better and doesn’t wane as quickly as protection against infection. Even the protection against severe illness will likely wane after a while, but this won’t really be a problem because, since immunity is much less effective against infection and new people are going to get born who are completely susceptible because they have never been infected yet and won’t be vaccinated, the virus will continue to circulate so most people will be reinfected every few years. Most people see that as a bug, but in a way, it may actually be a feature. Indeed, those reinfections will typically be mild because immunity protects well against severe illness, but they will update immunity and therefore ensure that, the next time someone is infected, this reinfection is also mild. As long as the virus is not eradicated, which as we have seen is not going to happen, we don’t want it to circulate too much, but we also don’t want it to circulate too little. Otherwise, too much time may elapse between two infections in the same person, in which case even the protection against severe illness conferred by immunity may have waned by the time they get reinfected.

Eventually most people will have a primary infection when they’re children, which is perfectly harmless and, together with subsequent infections, will protect them against severe illness later, when infection would be more dangerous if they didn’t have any immunity. Since once people have immunity, infections are generally mild, most people likely won’t even bother getting vaccinated because the probability of becoming seriously ill due to SARS-CoV-2 will be very small since 1) the risk of getting infected in the first place will be low because immunity still offers some protection against infection and the virus will circulate much less after it has become endemic and 2) even if they are infected they will typically be well protected against severe illness. Elderly people will be the exception because their immune system is compromised, so for them it will make sense to get a vaccine booster on a regular basis and I expect that it’s what most of them will do, as they already do against the flu. Once it has become endemic, which again will take a few years or even decades for the transition to be fully over, SARS-CoV-2 will become just another respiratory virus and will never cause the damages it has just wrought on us again. At last, it will have become “just like the flu”, except that it probably won’t be as bad as the flu if only because immunity will be more effective and longer-lasting.8 This may have already happened in the past with a coronavirus after the 1889-1891 “Russian flu” pandemic, which some now believe to have actually been caused by the emergence of HCoV-OC43, another human coronavirus that is now endemic and causes the common cold. It’s likely that SARS-CoV-2 will follow a similar path and end up being similarly harmless.

How I learned not to worry about variants and why you shouldn’t either

I have argued that, although SARS-CoV-2 is not going anywhere and that it wouldn’t be eradicated, things are looking up and that as the virus becomes endemic it would become mostly harmless. However, I know that presented with the optimistic picture I painted of what lays ahead of us, many people will react in disbelief because they think that emerging variants of the virus will get in the way of this quasi-idyllic scenario. Instead of seeing the wave of infections associated with the Delta variant as the last jolts of a pandemic on the way out as the transition toward endemicity takes place, they see it as a sign that, because new variants will keep emerging, we are going to be trapped in a never-ending cycle of waves of infections, each of them leaving scores of dead behind. Given that since the end of 2020 and the emergence of the Alpha variant in England, a wave of variantophobia has taken over the world, I can’t blame you if you worry that something like that might be true, but if that’s the case then I think you will feel much better after reading this section because the case against this variantophobia is very strong and we have every reason to believe that variants won’t prevent the scenario I described above from unfolding. First, before I say anything else, just taking another look at the chart about what just happened in England above should already assuage your worries somewhat, but there is more so please just bear with me for a little longer and I promise that you won’t regret it.

Variants are neither a new phenomenon nor something peculiar to SARS-CoV-2. Viruses constantly mutate and, as a result, variants of SARS-CoV-2 started to emerge long before the public became aware of that phenomenon a few months ago. While I do not doubt that mutations can result in different properties, as I have already explained previously, the picture is more complicated than what epidemiologists claim, especially when it comes to their claims about the advantage of transmissibility that, according to them, some variants enjoy. But the real concern people have about variants in the long-run is that they might evade pre-existing immunity, in which case we’d pretty much be back to square one. Indeed, the optimistic prediction I made about what is going to happen as the virus becomes endemic depends on the fact that, once everyone has acquired immunity against the virus, it will no longer kill a large number of people because immunity will ensure that it circulates less so fewer people will be infected and that even when someone is infected the infection will usually be mild. Obviously, if new variants emerge that can evade this immunity, this is not going to work and the pandemic will not end. But this is not going to happen and people who say otherwise are just talking nonsense.

In order to understand why, you must know a few things about how immunity works. Most people think of immunity as a black-or-white kind of thing: you either have it and you’re completely protected against both infection and severe illness or you don’t have it and you’re not protected against either. However, that is not how it works, the reality is more complicated. Immunity has several layers and comes in degrees. I have already noted that immunity against SARS-CoV-2 offered better protection against severe illness than against infection, but it’s even more complicated than that. For one thing, even if you have never been infected by SARS-CoV-2 and have not been vaccinated, it’s not true that you have no immunity against it. You have some immunity against it because your innate immune system is capable of fighting off even pathogens that you have never encountered. If this were not true, everyone who is exposed to SARS-CoV-2 would have died, but almost everyone survives and the overwhelming majority of people only have mild symptoms or no symptoms at all. It’s just that sometimes this innate immunity is not enough to clear the infection on its own before things get ugly, so it needs the adaptive immune system, which is responsible for mounting a more specific immune response to pathogens.

Unlike the innate immune system, which offers generic protection against pathogens, the adaptive immune system offers tailor-made protection against specific pathogens that it previously encountered. It relies mainly on two types of cells, B-cells and T-cells, that each play a different role, but in both cases they work by recognizing parts of proteins called epitopes expressed by the pathogen, which in the case of SARS-CoV-2 is a virus. B-cells have receptors that directly bind epitopes on the surface of the virus, then proliferate and create antibodies that can also bind those epitopes, which prevents the virus from infecting cells and helps other types of cells in the immune system to remove them. In the case of T-cells, on the other hand, recognition is a bit more indirect. Viral proteins are first broken up into short chains of amino acids called peptides inside cells that are called antigen-presenting cells (APCs).9 Those peptides are then bound to molecules known as the major histocompatibility complex (MHC) and the resulting MHC-peptides complexes are transported to the surface of the APCs where they are presented for recognition by T-cells.10 T-cells have receptors that bind different types of MHC-peptide complexes and, if they recognize one of them, they get activated and start going to work against the virus. This contributes to the immune response in various ways, but in particular sets in motion the process that will result in the destruction of the cells that have been infected by the virus.11 Here is a chart adapted from this paper that summarizes B-cell and T-cell epitope recognition:A key fact about both T-cells and B-cells is that, when they are activated, they don’t just set in motion a process that will help clear the infection currently ongoing, but also a process that will allow them to do that more quickly the next time they encounter the virus.

You’re probably wondering why I’m telling you about all that, but don’t worry, you’re about to find out. In the case of SARS-CoV-2, antibodies seem to be crucial to protect against infection, which makes sense because if there are still many antibodies that can neutralize the virus around when someone is exposed to the virus again, it won’t even have the opportunity to infect cells and replicate. However, several studies have found that the number of antibodies against SARS-CoV-2 wanes relatively quickly after vaccination or a natural infection, so often immunity can’t prevent infection. But as we have just seen, the immune response is not limited to antibodies, let alone to the antibodies against SARS-CoV-2 that are still around by the time someone is exposed to the virus again. Upon a second exposure with the virus, T-cells whose receptors bind peptides from SARS-CoV-2 will go to work again, but this time they’ll be able to do it more quickly. This will ensure that, even if infection couldn’t be prevented, it will be cleared before things take a turn for the worst. Thus, T-cells play a key role in preventing severe illness and, unlike antibodies, neither B-cells nor T-cells specific to SARS-CoV-2 seem to wane quickly. In fact, according to various studies (including one which found that T-cells specific to SARS-CoV-1 were still present in the blood of people who had been infected 17 years ago), they likely stick around for years. So even though protection against infection seems relatively short, immunity likely confers protection against severe illness for a long time. But won’t new variants find a way to evade this pre-existing immunity and make even the protection against severe illness it confers ineffective? No, they almost certainly won’t, and T-cells are the reason why.

Indeed, T-cells mount a particularly robust immune response because they target a much greater number of epitopes than antibodies, so even the virus mutates to prevent antibodies resulting from a previous infection to bind it, this is unlikely to work against T-cells because the entire viral proteome of the virus, i. e. the complete set of proteins expressed by the virus, would have to be different. But SARS-CoV-2 mutates pretty slowly, so although new variants regularly emerge and will continue to do so in the future, most peptides from the virus will remain the same and therefore T-cells will still be able to recognize them. Indeed, the peptides that are bound to MHC molecules and presented on the surface of antigen-presenting cells are very short chains of between 8 and 25 amino acids (depending on the class of MHC to which they are bound), so they are unlikely to change even as the virus mutates. Since it mutates slowly, it’s kind of as if the virus were trying to win the lottery by just buying a handful of tickets, each of them with a very low probability of winning the jackpot. If it bought 500 of them, the probability that one of them is a winning ticket may be reasonably high, but since it only buys 8 to 25 of them in each case it’s very low. Moreover, even if one amino acid changes, this is usually not enough to prevent T-cell receptors from binding, so in this case having a winning ticket does not even guarantee that the virus will actually pocket any money. Of course, it will sometimes happen, but T-cells target hundreds of epitopes from SARS-CoV-2, so it won’t really make a difference to the overall immune response they mount against the virus. T-cells just take the recommendation that you shouldn’t put all your eggs in the same basket very seriously.

This looks fine in theory, but reality has a way of frustrating our theoretical expectations, so does it also work in practice? Yes, it does, it works exactly as theory predicts. A recent study examined the impact of SARS-CoV-2 variants on T-cell reactivity and found that, depending on the type of receptor, between 93% and 97% of the hundreds of previously identified T-cell epitopes were not affected by mutations in the variants of concern. Now, all epitopes do not contribute equally to the immune response mounted by T-cells, so in theory it could be that while only a handful of them were affected by mutations in variants of concern, they happened to be epitopes that were disproportionately involved in the T-cell response. But the authors checked and found that fully conserved epitopes accounted for on average 91.5% of the response, so this isn’t the case. Again, keep in mind that even for the handful of epitopes that were affected by mutations, it doesn’t mean that receptors from a previous infection are no longer capable of recognizing them. In any case, the study also found there was no statistically difference in reactivity of T-cells from people who had acquired immunity against the virus, whether it was through vaccination or a natural infection. It doesn’t mean that, had the sample been larger, a statistically significant difference wouldn’t have been found, but it means that at worse the loss of reactivity was small and possibly non-existent, which again is exactly what we’d expect based on the theoretical considerations. It may be that, although T-cells target hundreds of epitopes and SARS-CoV-2 is mutating slowly, after a long enough period of time it will have mutated enough that T-cells won’t be able to mount a strong enough immune response to protect against severe illness. But remember that SARS-CoV-2 is going to continue to circulate and that people will likely get reinfected every few years, so their immunity will be updated when they are, ensuring that any subsequent infections will also be mild.

But there is another reason almost nobody is talking about why it’s unlikely that we’ll see substantial immune evasion with T-cells. As I explained above, T-cells don’t recognize epitopes directly on the surface of the virus, but rather bind complexes formed by MHC molecules and peptides on the surface of antigen-presenting cells. Now, different MHC molecules can bind different peptides, which are then presented for recognition to T-cell receptors. As it happens, the region of the human genome that is responsible for the production of MHC molecules is the most polymorphic in the entire human genome, which means that even in the same population different individuals usually have different MHC molecules that can bind different epitopes from the virus before presenting them to T-cell receptors on the surface of antigen-presenting cells. This fact has been confirmed in the case of SARS-CoV-2 by another study that identified potential T-cell epitopes from the virus and used computational methods to predict their binding affinity with the MHC molecules produced by the different variants of the genes that code for them in human populations. The authors found there was significant variation in the epitopes derived from SARS-CoV-2 involved in T-cell response both across individual within the same population and between populations, although this variation wasn’t predicted to affect the overall level of response across individuals or populations.12 This is very important because it means that, even if the virus acquired mutations that allowed it to evade T-cell immunity in one individual or population, it typically wouldn’t help it evade T-cell immunity in another individual or population, which makes T-cell immune evasion even more unlikely.

The bottom line is that, if you’re the virus, T-cells are your worst nightmare. Getting ahead of antibodies is pretty easy and some variants of concern already do it to some extent, but T-cells are a completely different story and will be a much tougher nut to crack for the virus. As we have seen, we have very good theoretical and empirical reasons to expect that, in the war between the virus and T-cell immunity, not only is the latter going to win but it won’t even break a sweat doing it. It’s important to understand that, in that respect, SARS-CoV-2 is no different than other viruses and other viruses also have a hard time dealing with T-cell immunity. Indeed, as the authors of the study that examined the impact of SARS-CoV-2 variants on T-cell reactivity note, immune evasion at the level of T-cell response has never been reported for acute respiratory infections. People worry about variants because they hear that antibody response is not as effective against them, so they imagine that eventually another variant will emerge against which immunity will be completely ineffective, but that’s because they don’t know that antibodies are just one part of the immune response against SARS-CoV-2. Immunity has another layer depending on T-cells and, not only has this layer remained unaffected by mutations of the virus so far, but as we have just seen we have very good reasons to think it will continue to be true in the future.

As I noted above, it’s likely that SARS-CoV-2 will follow a trajectory similar to that of the other human coronaviruses (which are already endemic), so it’s particularly interesting to know that what I’m predicting for SARS-CoV-2 is exactly what is already happening with those human coronaviruses. A recent study examined the recent evolution of HCoV-229E, one of the four human coronaviruses that are already endemic, and found that its spike, the protein that allows the virus to enter cells and infect them, had undergone several mutations between 1984 and 2020. They used sera collected on recovering patients at various points during that period to test how well the antibodies they contain were able to bind reconstructed spikes of the virus from 1984, 1992, 2001, 2008 and 2016. What they found is that antibodies in sera collected at one date were able to find effectively the spikes that were found on HCoV-229E before that date, but not or not very effectively the spikes that were found on the virus after that date, which shows that HCoV-229E had mutated to evade antibody binding, which is already what we’re seeing in SARS-CoV-2. But HCoV-229E remained mostly harmless during that period, which is presumably because while people’s antibody response against it became less efficient due to mutations in the spike, T-cell immunity remained largely unaffected. This is exactly what we’re seeing with SARS-CoV-2 so far and we have every reason to believe that it will continue to be true in the future. The only difference is that, in the case of HCoV-229E, nobody bothers naming the variants and people aren’t freaking out because they think immunity will stop working against them. Again, SARS-CoV-2 is just another respiratory virus, what made it so devastating is that it was novel.

SARS-CoV-2 is not going anywhere

Some people insist that we can’t “live with the virus” and that we must therefore pursue a policy of eradication. They often draw a parallel with smallpox and say that we should do the same thing with SARS-CoV-2 that we did with that virus, which after plaguing mankind for thousands of years was finally eradicated in 1980. This parallel is extremely misleading though, because smallpox differs from SARS-CoV-2 in very important ways, which made eradication possible though difficult in the case of the former but make it very unlikely in the case of the latter. Before I get into that, it’s worth noting that to date only two infectious diseases have ever been successfully eradicated (smallpox in humans and rinderpest in cattle), which speaks to how difficult this sort of enterprise is. This is not for lack of trying, as several other infectious diseases have been targeted for eradication, but those efforts have not succeeded yet. Polio seems on the verge of eradication and probably will be eradicated soon, but isn’t yet. Even in the case of smallpox, eradication took decades. You might take this to suggest that, while SARS-CoV-2 will not be eradicated overnight, we might pull it off eventually if we really commit to it. But I don’t think it’s going to happen because again SARS-CoV-2 is very different from the viruses that cause smallpox or polio.

First, while I think there is no doubt that vaccines against SARS-CoV-2 protect against infections and not just severe disease (as we have seen above), I think it’s equally clear that the protection it offers against infection is far from perfect and that people can get infected even if they have been vaccinated. There is also growing evidence that, while it does not disappear almost immediately as some people had initially suggested based on weak evidence, the protection against infection conferred by vaccination is waning relatively quickly. As this study showed, the same thing is true for the immunity against endemic human coronaviruses induced by natural infection, so this is not particularly surprising. According to the COVID-19 Infection Survey, based on a random sample of the population in the United Kingdom, more than 90% of people had antibodies against SARS-CoV-2 in June, but it didn’t prevent a gigantic third or fourth wave (depending on how you’re counting) from ripping through the country in July. The same thing just happened in Iceland, where more than 90% of the population over 16 has received at least one dose of vaccine. As we have seen, this is not really a problem because thanks to vaccination and naturally acquired immunity mortality remained low, but it suggests that even mass vaccination within a short period of time cannot stop the virus from circulating. The vaccine against smallpox, on the other hand, probably confers lifelong protection against infection and the same thing seems to be true about naturally acquired immunity. Basically, in order to get rid of smallpox, we “just” needed to vaccinate everyone in their childhood and that was it. The same thing is true with polio.

So this means that, in order to eradicate SARS-CoV-2, we’d have to vaccinate the entire population every year for several years in a row and even that would probably not be enough.13 That’s a much larger effort than what we had to do to get rid of smallpox, yet even that comparatively simple endeavor took decades. Who can seriously believe that we’ll be able to sustain that effort for the years or even decades that it would take to eradicate the virus, when we aren’t even able to do it in the middle of a pandemic that just killed millions of people? This is a pipe dream, it will never happen. Indeed, convincing or coercing people to get vaccinated is going to become even harder, because as I have explained the virus will be mostly harmless once it has become endemic. If you think it’s hard to convince people to get vaccinated or politically difficult to coerce them to do so while people are dropping dead by the thousands, which it most certainly is, wait until the mortality caused by SARS-CoV-2 is divided by a factor of 20 or something. It’s pointless and wasteful to pursue a policy that has no realistic chance of succeeding, but that’s exactly what people who are calling to eradicate SARS-CoV-2 are doing. Not that it will make any difference, to be clear, because the same reasons that make this project a fantasy will ensure that calls to carry it out will remain unanswered.

Again the comparison with smallpox or even polio is extremely misleading here. Smallpox is one of the most lethal pathogens in history and has probably killed hundreds of millions of people in the last 100 years of its existence alone. It’s painfully obvious that the incentives are completely different in the case of SARS-CoV-2. Even with polio, whose infection fatality rate is similar to SARS-CoV-2, the incentives are very different because it mostly kills or maims children. Does anyone really expect that people are going to be as motivated to eradicate a virus that mostly kills elderly people as they are to get rid of a virus that kills or paralyzes children? Moreover, as I already noted, in the case of polio, you just have to administer a few shots to people when they’re very young children and you’re done with it. The comparison of SARS-CoV-2 with other pathogens can be illuminating in some cases, but comparing it to smallpox or even polio to suggest that we could eradicate it and that it’s a realistic possibility is extremely misleading. Even if we granted for the sake of the argument that it could be done if we committed enough resources to the effort, it’s totally unrealistic to expect that we ever will, because the incentives aren’t right.14

There are other differences between SARS-CoV-2 and smallpox or even polio that make it far more difficult to eradicate the former. In particular, smallpox and polio only infect humans, but SARS-CoV-2 can also infect animals and frequently does. While the evidence of animal-to-human transmission is so far very limited, I think it’s mostly because the studies that have found evidence that animals could be infected by SARS-CoV-2 were not designed to answer that question. If the virus becomes endemic in some animal populations that are frequently in contact with humans, then even if we somehow managed to temporarily eradicate it from human populations, animals would just reintroduce it and we’d be back to square one. At least one animal reservoir has already been found in the white-tailed deer population in the US, so this isn’t a purely theoretical worry. What this means is that, in order to permanently eradicate SARS-CoV-2 from human populations, we’d probably have to vaccinate wild animals. This can be done and has been done in some countries such as France, where a program to vaccinate some wild animals against rabies was undertaken, but it just makes eradication even more difficult and costly, which in turn makes it even more unlikely that we’ll even try, let alone succeed.


The pandemic is on its way out, but SARS-CoV-2 is here to stay. Fortunately, as everyone develops immunity to it (whether through vaccination or natural infection), it will soon no longer be a major problem anymore. The virus will continue to circulate, but much less than during the pandemic and, even when people are infected, the infection will typically be mild. In the future, almost everyone will get infected for the first time during their childhood, which is harmless and will protect them against severe illness when they are reinfected.15 The virus will continue to mutate and some of those mutations will favor immune evasion, but while this will allow it to infect people who have already been infected or vaccinated more easily, immunity should continue to protect against severe forms of the disease, thanks in particular to the role played by T-cells. This is likely what happened with other human coronaviruses, which are already endemic and typically cause a cold in the people they infect. To the extent that immune evasion occurs, it will be very gradual and the fact that most people will be infected every few years will update their immunity, ensuring that subsequent reinfections will also be mild. The most vulnerable people, whose immune system doesn’t work very well and could use some help to be ready in case of infection, can get a vaccine booster from time to time. The virus will still kill people, as the flu does, but it will never cause the same amount of disruption again. The hardest part of what lays ahead may be to convince people who have been traumatized by the pandemic that it’s over and that restrictions are no longer necessary.

P. S. I realize that, while it doesn’t exactly say that, this post makes it sound as though the only reason why protection against infection appears to have been waning is that new variants with mutations in the spike that allow them to prevent antibodies from binding have emerged, so to be clear that’s not what I’m saying. I was focusing on immune evasion, because that’s what people seem most worried about, but another reason why protection against infection is probably waning is that antibody levels progressively fall after infection. Moreover, as someone pointed out to me, so does the number of T-cells specialized against SARS-CoV-2 and I’m sure the same thing is true with B-cells, so as time goes by it also takes longer for the adaptive immune system to mount a response upon exposure to the virus. I also didn’t mean to suggest that mutations in the spike make antibodies completely inefficient. The point I wanted to make is just that, even if a variant is able to evade humoral immunity to a large extent, T-cell immunity should still work just fine against it and eventually the immune system should be able to mount a very effective response to infection, even if the fact that T-cell levels also wane means that it will take longer as the time since the last infection increases.

Print Friendly, PDF & Email
  • 1As some studies suggest, there was probably some cross-immunity due to prior exposure to seasonal human coronaviruses, so this claim is not exactly true, but clearly this immunity was very limited.
  • 2Biologists make a distinction between the innate immune system and the adaptive immune system. The former offers generic protection against pathogens that invade the body and can effectively deal with most of them, while the latter offers protection against specific pathogens that have been previously encountered. As I noted above, there was probably some adaptive immunity against SARS-CoV-2 in the population due to the similarity of parts of the proteins expressed by the virus with those of endemic human coronaviruses, but again it was very limited.
  • 3Another reason is that natural selection had probably favored alleles that protect against those pathogens in Europeans precisely because they had lived with them for so long, whereas this was not the case in America where indigenous populations had separated from other human populations before the emergence of those diseases, which probably occurred during and after the neolithic when animals were first domesticated.
  • 4The notion of endemic equilibrium has a precise mathematical definition in epidemiological models, but while those models may be useful to describe some aspects of this process in a stylized manner, I think they bear little connection to reality and use the term in a more informal sense.
  • 5This is the kind of situation you would expect in a population where the virus has become endemic, almost everyone is infected for the first time during their childhood, immunity wanes over time but people get reinfected or vaccinated every few years.
  • 6This is the kind of situation you would expect if old people got vaccinated regularly because they know they are vulnerable. You would expect the virus to circulate more among children since, by assumption, more of them are susceptible to infection.
  • 7If you want to see a more realistic attempt at modeling the transition to endemicity, which tries to predict how long it will take depending on factors such as how fast the protection against infection conferred by immunity wanes and the basic reproduction number of the virus, I encourage you to read Lavine et al. (2021). I wouldn’t take very seriously their quantitative estimates, because the model still ignores many complications and the specific results are sensitive to various semi-arbitrary assumptions they make, but there is every reason to think their qualitative conclusions, which are consistent with the prediction I make below about what is going to happen once SARS-CoV-2 has become endemic, are correct because they just rest on the basic logic I have just explained.
  • 8Indeed, influenza mutates faster than SARS-CoV-2 due to the absence of a similar proofreading mechanism during replication and because it has a segmented genome that makes recombination between various strains easier, which makes it harder for immunity to clear infection and explains why vaccines against the flu quickly become obsolete.
  • 9The terminology can be a bit confusing, so it may be useful to clarify it. Epitopes are the parts of viral proteins that are recognized by the adaptive immune system, whether they are still part of the protein when this recognition takes place or have been broken up and are no longer part of it. In the case of B-cells, they are recognized directly on the protein that is still intact on the surface of the virus, but in the case of T-cells this recognition takes place after the viral proteins have been broken up into peptides. So peptides can be epitopes when they are presented on the surface of APCs for recognition by T-cells, but epitopes need not be peptides and peptides need not be epitopes.
  • 10There are different classes of MHC molecules that are found on different kinds of APCs and are recognized by different types of T-cells, but this is not important for what I’m trying to explain.
  • 11B-cells are APCs and therefore present MHC-peptide complexes to T-cells, which in turn stimulate the proliferation of B-cells specific to the relevant peptides and the production of antibodies that can bind them directly on the surface of the virus, so T-cells and B-cells are not entirely distinct parts of the immune system but interact in complex ways to produce the immune response.
  • 12This result still held when they looked at potential T-cell peptides derived from individual proteins expressed by the virus rather than the entire viral proteome, so even if peptides derived from specific proteins are more important to the T-cell response than others, this response will still rely on different epitopes in different individuals and different populations. In particular, this is true for epitopes derived from the spike protein, which is the one used by the currently available vaccines to induce immunity.
  • 13Perhaps this will change as new, more effective vaccines are developed, but I wouldn’t hold my breath, especially since as I have argued SARS-CoV-2 is going to become far less dangerous, so pharmaceutical companies will have less incentives to invest money into research and development for better vaccines against it.
  • 14You may think that, although eradicating SARS-CoV-2 would be extremely costly and difficult, it would still be cost-effective given the expected death toll of COVID-19 in the long-run and you may even be right despite the fact that it’s going to become far less dangerous once it’s endemic. But this wouldn’t change the fact that it’s almost certainly not going to happen because, as we have seen during the pandemic, decision-makers are hardly utility maximizers. Thus, when I claim that eradication of SARS-CoV-2 is not desirable, I’m not committing myself to the view that, even if people were perfectly rational, such a policy wouldn’t pass a cost-benefit test (although I think it probably wouldn’t), but only to the weaker claim that it wouldn’t in the actual world because the lack of incentives to pursue this policy lowers the probability of success and increases the cost.
  • 15At the moment, many people want to vaccinate their kids, but I doubt it will still be the case in a few years when the panic induced by the pandemic has subsided and people have realized that SARS-CoV-2 is harmless to children.