These symptoms and risk factors may predict whether you could become a ‘COVID-19 long hauler,’ study suggests

Authors: Adrianna Rodriguez USA TODAY March 11, 2021

A new study suggests coronavirus symptoms felt in the first week of infection may be a predictor of how long they will last.

Patients with COVID-19 who felt more than five symptoms in their first week of illness were more likely to become a “COVID-19 long hauler,” which researchers qualified as having symptoms for longer than 28 days, according to the study published Wednesday in the peer-reviewed journal Nature Medicine.

The five symptoms experienced during the first week that were most predictive of becoming a long hauler were fatigue, headache, hoarse voice, muscle pain and difficulty breathing.

Researchers from King’s College London, Massachusetts General Hospital and Boston Children’s Hospital asked COVID-19 patients from the U.K., U.S. and Sweden to report their symptoms through a smartphone application from March to September 2020.

Out of more than 4,000 participants, about 13% of patients reported symptoms lasting more than 28 days, 4% for more than 8 weeks and 2% more than 12 weeks.

Out of the patients who reported symptoms for more than four weeks, “a third of those will have symptoms at 8 weeks and then a third of those at 12 weeks,” said study co-author Dr. Christina Astley, a physician scientist at Boston Children’s Hospital. “If you think about it, 1 in 20 people who have COVID-19 will have symptoms lasting 8 weeks or more.” 

The likelihood of having persistent symptoms was significantly associated with increasing age, rising from 9.9% of individuals 18 to 49, to 21.9% in those above 70. Anosmia, or the loss of smell, was the most common symptom in older age groups.

Women also were more likely to have long COVID-19 than men, with 14.9% of female study participants reporting symptoms 28 days after initial infection, compared with 9.5% of men.

While the study attempted to identify risk factors and markers that may indicate long COVID-19, doctors are finding it can happen to anyone at any age, said Dr. Michael Wechsler, a pulmonologist at National Jewish Health.

“It can happen in any age group, but it’s most alarming to younger people who are otherwise healthy and not used to these symptoms,” he said.

COVID long haulers:Dr. Anthony Fauci aims to answer ‘a lot of important questions’ in new nationwide initiative

The study found two main patterns among study participants. One group of COVID-19 long haulers exclusively reported fatigue, headache and upper respiratory issues, such as shortness of breath, sore throat, cough and loss of smell. However, a second group of long haulers had persistent multi-system complaints, such as a fever or gastrointestinal symptoms.

Weschler sees a wide array of symptoms in the clinic that caters to COVID-19 long haulers at National Jewish Health. Similar clinics have popped up in hospitals across the country to accommodate the growing number of COVID-19 patients who report symptoms months after recovery.

“Long COVID is common. It affects a large proportion of patients and has a wide distribution of symptoms,” he said. “It’s important to make people aware that all these different side effects and symptoms can occur.”

The study comes a few weeks after Dr. Anthony Fauci announced the U.S. government was launching nationwide initiative to study long COVID-19, which he called Post Acute Sequelae of SARS-CoV-2 (PASC).

A study published in JAMA Network Open on Feb. 19 found that about 30% of COVID-19 patients reported persistent symptoms as long as nine months after illness.

“(There are) a lot of important questions that are now unanswered that we hope with this series of initiatives we will ultimately answer,” he said during a White House briefing Feb. 24.

Clinical determinants of the severity of COVID-19: A systematic review and meta-analysis

PLOS

Abstract

Objective


We aimed to systematically identify the possible risk factors responsible for severe cases.


Methods

We searched PubMed, Embase, Web of science and Cochrane Library for epidemiological studies of confirmed COVID-19, which include information about clinical characteristics and severity of patients’ disease. We analyzed the potential associations between clinical characteristics and severe cases.


Results

We identified a total of 41 eligible studies including 21060 patients with COVID-19. Severe cases were potentially associated with advanced age (Standard Mean Difference (SMD) = 1.73, 95% CI: 1.34–2.12), male gender (Odds Ratio (OR) = 1.51, 95% CI:1.33–1.71), obesity (OR = 1.89, 95% CI: 1.44–2.46), history of smoking (OR = 1.40, 95% CI:1.06–1.85), hypertension (OR = 2.42, 95% CI: 2.03–2.88), diabetes (OR = 2.40, 95% CI: 1.98–2.91), coronary heart disease (OR: 2.87, 95% CI: 2.22–3.71), chronic kidney disease (CKD) (OR = 2.97, 95% CI: 1.63–5.41), cerebrovascular disease (OR = 2.47, 95% CI: 1.54–3.97), chronic obstructive pulmonary disease (COPD) (OR = 2.88, 95% CI: 1.89–4.38), malignancy (OR = 2.60, 95% CI: 2.00–3.40), and chronic liver disease (OR = 1.51, 95% CI: 1.06–2.17). Acute respiratory distress syndrome (ARDS) (OR = 39.59, 95% CI: 19.99–78.41), shock (OR = 21.50, 95% CI: 10.49–44.06) and acute kidney injury (AKI) (OR = 8.84, 95% CI: 4.34–18.00) were most likely to prevent recovery. In summary, patients with severe conditions had a higher rate of comorbidities and complications than patients with non-severe conditions.

Conclusion

Patients who were male, with advanced age, obesity, a history of smoking, hypertension, diabetes, malignancy, coronary heart disease, hypertension, chronic liver disease, COPD, or CKD are more likely to develop severe COVID-19 symptoms. ARDS, shock and AKI were thought to be the main hinderances to recovery.

For More Information: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250602

Asthmatics at no higher risk getting or dying from COVID-19, assessment of studies consisting of 587,000 people shows

Authors: February 19, 2021Source:Taylor & Francis Group

Summary:

A review of 57 studies shows people with asthma had a 14 percent lower risk of getting COVID-19 and were significantly less likely to be hospitalized with the virus.

A new study looking at how COVID-19 affects people with asthma provides reassurance that having the condition doesn’t increase the risk of severe illness or death from the virus.

George Institute for Global Health researchers in Australia analysed data from 57 studies with an overall sample size of 587,280. Almost 350,000 people in the pool had been infected with COVID-19 from Asia, Europe, and North and South America and found they had similar proportions of asthma to the general population.

The results, published in the peer-reviewed Journal of Asthma, show that just over seven in every 100 people who tested positive for COVID-19 also had asthma, compared to just over eight in 100 in the general population having the condition. They also showed that people with asthma had a 14 percent lower risk of acquiring COVID-19 and were significantly less likely to be hospitalized with the virus.

There was no apparent difference in the risk of death from COVID-19 in people with asthma compared to those without.

Head of The Institute’s Respiratory Program, co-author Professor Christine Jenkins said that while the reasons for these findings weren’t clear, there were some possible explanations — such as some inhalers perhaps limiting the virus’ ability to attach to the lungs.

“Chemical receptors in the lungs that the virus binds to are less active in people with a particular type of asthma and some studies suggest that inhaled corticosteroids — commonly used to treat asthma — can reduce their activity even further,” she said.

“Also, initial uncertainty about the impact of asthma on COVID-19 may have caused anxiety among patients and caregivers leading them to be more vigilant about preventing infection.”

Lead author Dr Anthony Sunjaya added that while this study provides some reassurance about the risks of exposure to COVID-19 in people with asthma, doctors and researchers were still learning about the effects of the virus.

“While we showed that people with asthma do not seem to have a higher risk of infection with COVID-19 compared to those without asthma and have similar outcomes, we need further research to better understand how the virus affects those with asthma,” he said.

For More Information: https://www.sciencedaily.com/releases/2021/02/210219091850.htm

Overweight/obesity as the potentially most important lifestyle factor associated with signs of pneumonia in COVID-19

PLOS
  • Published: November 18, 2020

Abstract

Objective

The occurrence of pneumonia separates severe cases of COVID-19 from the majority of cases with mild disease. However, the factors determining whether or not pneumonia develops remain to be fully uncovered. We therefore explored the associations of several lifestyle factors with signs of pneumonia in COVID-19.

Methods

Between May and July 2020, we conducted an online survey of 201 adults in Germany who had recently gone through COVID-19, predominantly as outpatients. Of these, 165 had a PCR-based diagnosis and 36 had a retrospective diagnosis by antibody testing. The survey covered demographic information, eight lifestyle factors, comorbidities and medication use. We defined the main outcome as the presence vs. the absence of signs of pneumonia, represented by dyspnea, the requirement for oxygen therapy or intubation.

Results

Signs of pneumonia occurred in 39 of the 165 individuals with a PCR-based diagnosis of COVID-19 (23.6%). Among the lifestyle factors examined, only overweight/obesity was associated with signs of pneumonia (odds ratio 2.68 (1.29–5.59) p = 0.008). The observed association remained significant after multivariate adjustment, with BMI as a metric variable, and also after including the antibody-positive individuals into the analysis.

Conclusions

This exploratory study finds an association of overweight/obesity with signs of pneumonia in COVID-19. This finding suggests that a signal proportional to body fat mass, such as the hormone leptin, impairs the body’s ability to clear SARS-CoV-2 before pneumonia develops. This hypothesis concurs with previous work and should be investigated further to possibly reduce the proportion of severe cases of COVID-19.

For More Information: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237799

Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19

Authors: Davide Scozzi,1Marlene Cano,2Lina Ma,2Dequan Zhou,1Ji Hong Zhu,1Jane A. O’Halloran,3Charles Goss,4Adriana M. Rauseo,3Zhiyi Liu,1Sanjaya K. Sahu,2Valentina Peritore,5Monica Rocco,6Alberto Ricci,7Rachele Amodeo,8Laura Aimati,8Mohsen Ibrahim,1,5Ramsey Hachem,2Daniel Kreisel,1Philip A. Mudd,9Hrishikesh S. Kulkarni,2,10 and Andrew E. Gelman1,11

Abstract

Background

Mitochondrial DNA (MT-DNA) are intrinsically inflammatory nucleic acids released by damaged solid organs. Whether circulating cell-free MT-DNA quantitation could be used to predict the risk of poor COVID-19 outcomes remains undetermined.

Methods

We measured circulating MT-DNA levels in prospectively collected, cell-free plasma samples from 97 subjects with COVID-19 at hospital presentation. Our primary outcome was mortality. Intensive care unit (ICU) admission, intubation, vasopressor, and renal replacement therapy requirements were secondary outcomes. Multivariate regression analysis determined whether MT-DNA levels were independent of other reported COVID-19 risk factors. Receiver operating characteristic and area under the curve assessments were used to compare MT-DNA levels with established and emerging inflammatory markers of COVID-19.

Results

Circulating MT-DNA levels were highly elevated in patients who eventually died or required ICU admission, intubation, vasopressor use, or renal replacement therapy. Multivariate regression revealed that high circulating MT-DNA was an independent risk factor for these outcomes after adjusting for age, sex, and comorbidities. We also found that circulating MT-DNA levels had a similar or superior area under the curve when compared against clinically established measures of inflammation and emerging markers currently of interest as investigational targets for COVID-19 therapy.

Conclusion

These results show that high circulating MT-DNA levels are a potential early indicator for poor COVID-19 outcomes.

For More Information: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7934921/

Mapping the human genetic architecture of COVID-19

  1. COVID-19 Host Genetics Initiative, Nature (2021)

Abstract

The genetic makeup of an individual contributes to susceptibility and response to viral infection. While environmental, clinical and social factors play a role in exposure to SARS-CoV-2 and COVID-19 disease severity1,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. We describe the results of three genome-wide association meta-analyses comprised of up to 49,562 COVID-19 patients from 46 studies across 19 countries. We reported 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian Randomization analyses support a causal role for smoking and body mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19, with unprecedented speed, was made possible by the community of human genetic researchers coming together to prioritize sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.

For More Information: https://www.nature.com/articles/s41586-021-03767-x

Risk factors for severe and critically ill COVID-19 patients: A review

Authors: Ya-Dong Gao 1Mei Ding 1 2Xiang Dong 1Jin-Jin Zhang 1Ahmet Kursat Azkur 3Dilek Azkur 4Hui Gan 1Yuan-Li Sun 1Wei Fu 1Wei Li 1Hui-Ling Liang 1Yi-Yuan Cao 5Qi Yan 6Can Cao 1Hong-Yu Gao 6Marie-Charlotte Brüggen 7 8 9Willem van de Veen 2Milena Sokolowska 2Mübeccel Akdis 2Cezmi A Akdis 2

Abstract

The pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused an unprecedented global social and economic impact, and high numbers of deaths. Many risk factors have been identified in the progression of COVID-19 into a severe and critical stage, including old age, male gender, underlying comorbidities such as hypertension, diabetes, obesity, chronic lung diseases, heart, liver and kidney diseases, tumors, clinically apparent immunodeficiencies, local immunodeficiencies, such as early type I interferon secretion capacity, and pregnancy. Possible complications include acute kidney injury, coagulation disorders, thromboembolism. The development of lymphopenia and eosinopenia are laboratory indicators of COVID-19. Laboratory parameters to monitor disease progression include lactate dehydrogenase, procalcitonin, high-sensitivity C-reactive protein, proinflammatory cytokines such as interleukin (IL)-6, IL-1β, Krebs von den Lungen-6 (KL-6), and ferritin. The development of a cytokine storm and extensive chest computed tomography imaging patterns are indicators of a severe disease. In addition, socioeconomic status, diet, lifestyle, geographical differences, ethnicity, exposed viral load, day of initiation of treatment, and quality of health care have been reported to influence individual outcomes. In this review, we highlight the scientific evidence on the risk factors of severity of COVID-19.

For More Information: https://pubmed.ncbi.nlm.nih.gov/33185910/

The pathophysiology of bronchiectasis

Authors : King P

Abstract: 

Bronchiectasis is defined by permanent and abnormal widening of the bronchi. This process occurs in the context of chronic airway infection and inflammation. It is usually diagnosed using computed tomography scanning to visualize the larger bronchi. Bronchiectasis is also characterized by mild to moderate airflow obstruction. This review will describe the pathophysiology of noncystic fibrosis bronchiectasis. Studies have demonstrated that the small airways in bronchiectasis are obstructed from an inflammatory infiltrate in the wall. As most of the bronchial tree is composed of small airways, the net effect is obstruction. The bronchial wall is typically thickened by an inflammatory infiltrate of lymphocytes and macrophages which may form lymphoid follicles. It has recently been demonstrated that patients with bronchiectasis have a progressive decline in lung function. There are a large number of etiologic risk factors associated with bronchiectasis. As there is generally a long-term retrospective history, it may be difficult to determine the exact role of such factors in the pathogenesis. Extremes of age and smoking/chronic obstructive pulmonary disease may be important considerations. There are a variety of different pathogens involved in bronchiectasis, but a common finding despite the presence of purulent sputum is failure to identify any pathogenic microorganisms. The bacterial flora appears to change with progression of disease.

For More Information: https://www.dovepress.com/the-pathophysiology-of-bronchiectasis-peer-reviewed-fulltext-article-COPD

Comorbidity and its Impact on Patients with COVID-19

Authors: Adekunle Sanyaolu 1Chuku Okorie 2Aleksandra Marinkovic 3Risha Patidar 3Kokab Younis 4Priyank Desai 5Zaheeda Hosein 6Inderbir Padda 7Jasmine Mangat 6Mohsin Altaf 8

Abstract

A novel human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in Wuhan, China, in December 2019. Since then, the virus has made its way across the globe to affect over 180 countries. SARS-CoV-2 has infected humans in all age groups, of all ethnicities, both males and females while spreading through communities at an alarming rate. Given the nature of this virus, there is much still to be learned; however, we know that the clinical manifestations range from a common cold to more severe diseases such as bronchitis, pneumonia, severe acute respiratory distress syndrome (ARDS), multi-organ failure, and even death. It is believed that COVID-19, in those with underlying health conditions or comorbidities, has an increasingly rapid and severe progression, often leading to death. This paper examined the comorbid conditions, the progression of the disease, and mortality rates in patients of all ages, infected with the ongoing COVID-19 disease. An electronic literature review search was performed, and applicable data was then collected from peer-reviewed articles published from January to April 20, 2020. From what is known at the moment, patients with COVID-19 disease who have comorbidities, such as hypertension or diabetes mellitus, are more likely to develop a more severe course and progression of the disease. Furthermore, older patients, especially those 65 years old and above who have comorbidities and are infected, have an increased admission rate into the intensive care unit (ICU) and mortality from the COVID-19 disease. Patients with comorbidities should take all necessary precautions to avoid getting infected with SARS CoV-2, as they usually have the worst prognosis.

For More Information: https://pubmed.ncbi.nlm.nih.gov/32838147/

Severe covid-19 pneumonia: pathogenesis and clinical management

Authors: Amy H Attaway, assistant professor of medicine, associate director, COPD center1,  Rachel G Scheraga, assistant professor of medicine2,  Adarsh Bhimraj, head, section of neurological infections; staff, infectious diseases1,  Michelle Biehl, associate staff, pulmonary and critical care medicine; director, post ICU recovery clinic1,  Umur Hatipoğlu, associate professor of medicine; director, respiratory therapy; director, COPD center1

Abstract

Severe covid-19 pneumonia has posed critical challenges for the research and medical communities. Older age, male sex, and comorbidities increase the risk for severe disease. For people hospitalized with covid-19, 15-30% will go on to develop covid-19 associated acute respiratory distress syndrome (CARDS). Autopsy studies of patients who died of severe SARS CoV-2 infection reveal presence of diffuse alveolar damage consistent with ARDS but with a higher thrombus burden in pulmonary capillaries. When used appropriately, high flow nasal cannula (HFNC) may allow CARDS patients to avoid intubation, and does not increase risk for disease transmission. During invasive mechanical ventilation, low tidal volume ventilation and positive end expiratory pressure (PEEP) titration to optimize oxygenation are recommended. Dexamethasone treatment improves mortality for the treatment of severe and critical covid-19, while remdesivir may have modest benefit in time to recovery in patients with severe disease but shows no statistically significant benefit in mortality or other clinical outcomes. Covid-19 survivors, especially patients with ARDS, are at high risk for long term physical and mental impairments, and an interdisciplinary approach is essential for critical illness recovery.

Introduction

The ongoing outbreak of the coronavirus disease 2019 (covid-19) has posed immense challenges for the research and medical communities. This review focuses on the epidemiologic and clinical features of covid-19, the pathophysiologic mechanisms, inpatient respiratory support, and the evidence to date on drug treatments. It also covers the recovery and long term management of patients with covid-19 pneumonia. The review is aimed at clinicians and intensivists caring for patients with severe covid-19 pneumonia as defined by the National Institutes of Health,1 referring to individuals with SARS-CoV-2 infection confirmed by polymerase chain reaction (PCR) testing who have SpO2 <94% on room air at sea level, a ratio of arterial partial pressure of oxygen to fraction of inspired oxygen (PaO2/FiO2) <300 mm Hg, respiratory frequency >30 breaths/min, or lung infiltrates >50%.

For More Information: https://www.bmj.com/content/372/bmj.n436