High cholesterol, overweight and reduced physical stamina are long COVID sequelae in young adults

Authors: University of Zurich Summary: 6, 2022:Science Daily

As the Covid-19 pandemic evolves, the issue of post-infection consequences is growing in significance. Does Long Covid impact previously healthy young adults? Although this group is of great societal importance, representing the next generation and the backbone of the workforce, the intermediate-term and long-term effects of SARS-CoV-2 infections have scarcely been researched in this population. Available original research tends to focus on sufferers who were hospitalized, the elderly or those with multiple morbidities, or restricts evaluations to a single organ system.

Long Covid implications in young Swiss military personnel

A new study, funded by the Swiss Armed Forces, and conducted under the leadership of Patricia Schlagenhauf, Professor at the Epidemiology, Biostatistics and Prevention Institute of the University of Zurich (UZH), has now evaluated possible Long Covid implications in young Swiss military personnel. The study, published in the journal Lancet Infectious Diseases, was done between May and November 2021 with 29 female and 464 male participants with a median age of 21. 177 participants had confirmed Covid-19 more than 180 days prior to the testing day, and the control group was made up of 251 SARS-CoV-2 serologically negative individuals. Unlike other studies the novel test battery also evaluated cardiovascular, pulmonary, neurological, ophthalmological, male fertility, psychological and general systems.

Despite overall recovery also sequelae after recent infections remain

The findings show that young, previously healthy, non-hospitalized individuals largely recover from mild infection and that the impact of the SARS-CoV-2 virus on several systems of the body is less than that seen in older, multi-morbid or hospitalized patients. However, the study also provided evidence that recent infections — even mild ones — can lead to symptoms such as fatigue, reduced sense of smell and psychological problems for up to 180 days, as well as having a short-term negative impact on male fertility. For non-recent infections — more than 180 days back — these effects were no longer significant.

Specific constellation carries risk of developing metabolic disorders

For those with non-recent infections, however, the study — which had a long follow-up — provided evidence of a potentially risky constellation: “Increased BMI, high cholesterol and lower physical stamina is suggestive of a higher risk of developing metabolic disorders and possible cardiovascular complications,” says principal investigator Patricia Schlagenhauf. “These results have societal and public-health effects and can be used to guide strategies for broad interdisciplinary evaluation of Covid-19 sequelae, their management, curative treatments, and provision of support in young adult populations.”

Significant landmark study points the way

The study, conducted in collaboration with clinics at the University Hospital Zurich and Spiez Laboratory, is novel in that it quantitatively evaluated multi-organ function using a sensitive, minimally invasive test battery in a homogenous group of people several months after a Covid-19 infection. A valuable facet of the study was the control group, serologically confirmed to have had no SARS-CoV-2 exposure. “This combination of a unique test battery, a homogenous cohort and a control group make this a very powerful, landmark study in the evidence base on Long Covid in young adults,” says Schlagenhauf.

make a difference: sponsored opportunity


Story Source:

Materials provided by University of ZurichNote: Content may be edited for style and length.


Journal Reference:

  1. Jeremy Werner Deuel, Elisa Lauria, Thibault Lovey, Sandrine Zweifel, Mara Isabella Meier, Roland Züst, Nejla Gültekin, Andreas Stettbacher, Patricia Schlagenhauf. Persistence, prevalence, and polymorphism of sequelae after COVID-19 in unvaccinated, young adults of the Swiss Armed Forces: a longitudinal, cohort study (LoCoMo)The Lancet Infectious Diseases, 2022; DOI: 10.1016/S1473-3099(22)00449-2

COVID-19 Autopsies Put Endothelial Damage, Angiogenesis in the Spotlight

Authors: L.A. McKeown

NEWSDaily News

COVID-19 Autopsies Put Endothelial Damage, Angiogenesis in the Spotlight

The still-forming picture suggests significantly more new-vessel growth in the lung than would be expected from a typical flu.

byL.A. McKeown

More autopsy reports on COVID-19 patients, some from the United States, are helping researchers piece together a picture of a virus that damages endothelial cells, causing a clotting disorder that can lead to deep vein thrombosis and pulmonary emboli.

“These people are in a hypercoagulant state, and early anticoagulation is important,” said Louis Maximilian Buja, MD (UTHealth, Houston, TX), lead author on a recent autopsy paper in Cardiovascular Pathology. “I think what’s going to happen is some kind of cocktail of combined therapies is going to evolve that’s going to give these people a better shot at surviving compared to just the respirator alone.”

As TCTMD recently reported, German researchers looking at 12 autopsies of COVID-19 patients found a substantial number of deaths were related to pulmonary embolism despite the patients having no prior evidence of thrombosis. In their autopsy study of patients from five centers in the United States, Buja and colleagues report major pulmonary thromboemboli with pulmonary infarcts and/or hemorrhage in five of 23 patients and a pattern of cardiac comorbidity similar to what was seen in the German study.

“The pathogenesis of COVID-19 pulmonary disease involves binding of SARS-CoV-2 virus to ACE2 receptors to pneumocytes and endothelial cells, leading to development of acute lung injury manifest as [diffuse alveolar damage],”

For More Information: https://www.tctmd.com/news/covid-19-autopsies-put-endothelial-damage-angiogenesis-spotlight

The Thorny Problem Of COVID-19 Vaccines And Spike Proteins

Authors: W. Glen Pyle

Almost since the beginning of the COVID-19 pandemic, a piece of the SARS-CoV2 virus called the “spike protein” has drawn interest from researchers and healthcare professionals.

New research by Yuyang Lei and colleagues published in the journal Circulation Research sheds new light on how the spike protein might play a critical role in the widespread damage caused by SARS-CoV2, and offers insight into treating the complications of COVID-19.

Vaccine skeptics have seized on the study to cast doubt on the safety of vaccines. But a review of the study’s findings shows that the concerns raised by vaccine doubters are much ado about nothing.

The Study

The vascular endothelium is an important player in the illness and death associated with COVID-19. The endothelium is a system of cells that line and protect the inside of blood vessels. SARS-CoV2 injures the endothelium leading to blood clots, heart attack, pulmonary embolism, and stroke. Despite the established link between COVID-19 and these cardiovascular complications, the mechanism by which they develop is unknown.

Researchers from Jiaotong University; the University of California, San Diego; and the Salk Institute used a pseudovirus coated with spike protein to investigate the effects of the viral protein on endothelial cells. Pseudoviruses – which were first developed over 50 years ago – contain the outer shell of the virus, but they lack the viral genes needed to reproduce.

Hamsters treated with the spike protein coated pseudovirus showed lung damage similar to that seen in humans infected with SARS-CoV2. When researchers added pseudovirus to cultured endothelial cells they found that the mitochondria inside the cells were injured. Since mitochondria are responsible for providing energy to cells, their dysfunction can cause cell death.

When isolated pulmonary arteries were exposed to the spike protein carrying pseudovirus there was some disruption in the ability of the blood vessels to dilate. The decreased ability to expand blood vessels that serve the lungs could impair the ability of the body to take up oxygen from lungs that are damaged by the virus.

The novelty of this study was the discovery that the spike protein itself causes damage, and that the pathway triggered by the spike protein could explain the widespread cardiovascular complications that develop in COVID-19 patients.

For More Information: https://www.science20.com/w_glen_pyle/the_thorny_problem_of_covid19_vaccines_and_spike_proteins-254373