Link between fever, diarrhea, severe COVID-19, and persistent anti-SARS-CoV-2 antibodies

Authors: By Dr. Liji Thomas, MD Jan 7 2021

Ever since the coronavirus disease 2019 (COVID-19) pandemic began, there have been many attempts to understand the nature and duration of immunity against the causative agent, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

A new preprint research paper appearing on the medRxiv* server describes a link between the persistence of neutralizing antibodies against the virus, disease severity, and specific COVID-19 symptoms.

Permanent immunity is essential if the pandemic is to end. In the earlier SARS epidemic, antibodies were found to last for three or more years after infection in most patients. With the current virus, it may last for six or more months at least, as appears from some reports. Other researchers have concluded that immunity wanes rapidly over the same period, with some patients who were tested positive for antibodies becoming seronegative later on. This discrepancy may be traceable to variation in testing methods, sample sizes and testing time points, as well as disease severity.

Study details

The current study looked at a population of over a hundred convalescent COVID-19 patients, testing most of them for antibodies at five weeks and three months from symptom resolution.

The researchers used a multiplex assay that measured the Immunoglobulin G (IgG) levels against four SARS-CoV-2 antigens, one from SARS-CoV, and four from circulating seasonal coronaviruses. In addition, they carried out an inhibition assay against SARS-CoV-2 spike receptor-binding domain (RBD)-angiotensin-converting enzyme 2 (ACE2) binding and a neutralization assay against the virus. The antibody titers were then plotted against various clinical features and demographic factors.

Antibody titers higher in COVID-19 convalescents

The researchers found that severe disease is correlated with advanced age and the male sex. Patients with underlying vascular disease were more likely to be hospitalized with COVID-19, but those with asthma were relatively spared.

Convalescent COVID-19 patients had higher IgG levels against all four SARS-CoV-2 antigens, relative to controls, and in 98% of cases, at least one of the tests was likely to show higher binding compared to controls. IgGs targeting the viral spike and RBD were likely to be much more discriminatory between SARS-CoV-2 patients and controls. Interestingly, anti-SARS-CoV IgG, as well as anti-seasonal betacoronavirus antibodies, were likely to be higher in these patients.

Anti-spike and anti-nucleocapsid IgG levels, as well as neutralizing antibody titers, were higher in convalescent hospitalized COVID-19 patients than in convalescent non-hospitalized patients, and the titers were positively associated with disease severity.Antibodies against SARS-CoV-2 persist three months after COVID-19 symptom resolution. Sera from COVID-19 convalescent subjects (n=79) collected 5 weeks (w) and 3 months (m) after symptom resolution were subjected to multiplex assay to detect IgG that binds to SARS-CoV-2 S, NTD, RBD and N antigens (A), to RBD-ACE2 binding inhibition assay (B), and to SARS-CoV-2 neutralization assay (C). Dots, lines, and asterisks in red represent non-hospitalized (n=67) and in blue represent hospitalized (n=12) subjects with lines connecting the two time points for individual subjects (*p<0.05 and **p<0.01 by paired t test).Antibodies against SARS-CoV-2 persist three months after COVID-19 symptom resolution. Sera from COVID-19 convalescent subjects (n=79) collected 5 weeks (w) and 3 months (m) after symptom resolution were subjected to multiplex assay to detect IgG that binds to SARS-CoV-2 S, NTD, RBD and N antigens (A), to RBD-ACE2 binding inhibition assay (B), and to SARS-CoV-2 neutralization assay (C). Dots, lines, and asterisks in red represent non-hospitalized (n=67) and in blue represent hospitalized (n=12) subjects with lines connecting the two time points for individual subjects (*p<0.05 and **p<0.01 by paired t test).

Clinical correlates of higher antibody titer

Related Stories

When antibody titers in non-hospitalized subjects were compared with clinical and demographic variables, they found that older males with a higher body mass index (BMI) and a Charlson Comorbidity Index score >2 were likely to have higher antibody titers. COVID-19 symptoms that correlated with higher antibody levels in these patients comprise fever, diarrhea, abdominal pain and loss of appetite. Chest tightening, headache and sore throat were associated with less severe symptoms.

The link between the specific symptoms listed above with higher antibody titers could indicate that they mark a robust systemic inflammatory response, which in turn is necessary for a strong antibody response. Diarrhea may mark severe disease, but it is strange that in this case, it was not more frequent in the hospitalized cohort. Alternatively, diarrhea may have strengthened the immune antibody response via the exposure of the virus to more immune cells via the damaged enteric mucosa. More study is required to clarify this finding.

Potential substitute for neutralizing assay

The binding assay showed that the convalescent serum at five weeks inhibited RBD-ACE2 binding much more powerfully than control serum. Neutralizing activity was also higher in these sera, but in 15% of cases, convalescent patients showed comparable neutralizing antibody titers to those in control sera. On the whole, however, there was a positive association between neutralizing antibody titer, anti-SARS-CoV-2 IgG titers, and inhibition of ACE2 binding.

Persistent immunity at three months

This study also shows that SARS-CoV-2 antibodies persist in these patients at even three months after symptoms subside, with persistent IgG titers against the SARS-CoV-2 spike, RBD, nucleocapsid and N-terminal domain antigens. Binding and neutralization assays remained highly inhibitory throughout this period. The same was true of antibodies against the other coronaviruses tested as well, an effect that has been seen with other viruses and could be the result of cross-reactive anti-SARS-CoV-2 antibodies. Alternatively, it could be due to the activation of memory B cells formed in response to infection by the seasonal beta-coronaviruses.

Conclusion

IgG titers, particularly against S and RBD, and RBD-ACE2 binding inhibition better differentiate between COVID-19 convalescent and naive individuals than the neutralizing assay,” the researchers concluded.

These could be combined into a single diagnostic test, they suggest, with extreme sensitivity and specificity. The correlation with neutralizing antibody titers could indicate that the neutralizing assay, which is more expensive, sophisticated and expensive, as well as more dangerous for the investigators, could be replaced by the other antibody tests without loss of value.

In short, the study shows that specific antibodies persist for three months at least following recovery; antibody titers correlate with COVID-19-related fever, loss of appetite, abdominal pain and diarrhea; and are also higher in older males with more severe disease, a higher BMI and CCI above 2. Further research would help understand the lowest protective titer that prevents reinfection, and the duration of immunity.

*Important Notice

medRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.Journal reference:

Pandemic Impact on Mortality and Economy Varies Across Age Groups and Geographies

Authors: VICTORIA UDALOVA  |  MARCH 08, 2021

The initial impact of the COVID-19 pandemic on the U.S. economy was widespread and affected people across all age groups and all states while the initial mortality impact targeted mostly older people in just a few states according to independent research by the U.S. Census Bureau.

During April 2020, the first full month of the pandemic, the United States experienced an additional 2.4 deaths per 10,000 individuals beyond predictions based on historical mortality trends. This was a 33% increase in all-cause national mortality — deaths caused directly or indirectly by the coronavirus.

There was a weak correlation between increased mortality rates and negative economic impact across states. There were states that experienced significant employment displacement but no additional mortality, for example. On the other hand, there were states that experienced large mortality impacts but modest economic impacts.

These additional deaths during the early days of the pandemic were highly concentrated in older age groups and in a few states.

Recent research examined the relationship between the pandemic’s mortality and economic impacts across different age groups and geography.

Economic Impact of COVID-19 Pandemic

The COVID-19 pandemic has caused a devastating loss of life but it has also devastated the nation’s economy.

Similar to the excess mortality concept, the pandemic’s economic impact is calculated by taking the difference between what is expected (based on historical trends) and what actually happens during a given period.

The ratio of employment to population is one measure of economic activity that shows the share of population 16 years and older working full- or part-time.

This measure closely tracks other possible measures of economic activity such as unemployment rate, percent of population with unemployment insurance claims, consumer spending, and small business employment.

Declines in the employment-to-population ratio that exceeded predictions indicate there was additional employment loss in the country due to the pandemic.

The decline in the employment-to-population ratio in the United States in April 2020 was significant. Historical trends predicted a 61.3% ratio but it turned out to be 51.5%. This additional national decline was 9.9 per 100 individuals in April 2020 (Figure 1). That means there were fewer people employed than was expected before the pandemic.

Impacts Varied by Geography

Deaths caused directly or indirectly by COVID during the first full month of the pandemic were highly geographically concentrated.

About half of all national excess deaths were in just two states: New York and New Jersey.

But the economic impact pattern was completely different because it was more geographically widespread.

Every state, except for Wyoming, experienced a statistically significant decline in the employment-to-population ratio during that time.

The two states with the largest initial declines in employment — Nevada and Michigan — only accounted for about 7% of the national employment displacement.

There was a weak correlation between increased mortality rates and negative economic impact across states. There were states that experienced significant employment displacement but no additional mortality, for example. On the other hand, there were states that experienced large mortality impacts but modest economic impacts.

For More Information: https://www.census.gov/library/stories/2021/03/initial-impact-covid-19-on-united-states-economy-more-widespread-than-on-mortality.html

Clinical determinants of the severity of COVID-19: A systematic review and meta-analysis

PLOS

Abstract

Objective


We aimed to systematically identify the possible risk factors responsible for severe cases.


Methods

We searched PubMed, Embase, Web of science and Cochrane Library for epidemiological studies of confirmed COVID-19, which include information about clinical characteristics and severity of patients’ disease. We analyzed the potential associations between clinical characteristics and severe cases.


Results

We identified a total of 41 eligible studies including 21060 patients with COVID-19. Severe cases were potentially associated with advanced age (Standard Mean Difference (SMD) = 1.73, 95% CI: 1.34–2.12), male gender (Odds Ratio (OR) = 1.51, 95% CI:1.33–1.71), obesity (OR = 1.89, 95% CI: 1.44–2.46), history of smoking (OR = 1.40, 95% CI:1.06–1.85), hypertension (OR = 2.42, 95% CI: 2.03–2.88), diabetes (OR = 2.40, 95% CI: 1.98–2.91), coronary heart disease (OR: 2.87, 95% CI: 2.22–3.71), chronic kidney disease (CKD) (OR = 2.97, 95% CI: 1.63–5.41), cerebrovascular disease (OR = 2.47, 95% CI: 1.54–3.97), chronic obstructive pulmonary disease (COPD) (OR = 2.88, 95% CI: 1.89–4.38), malignancy (OR = 2.60, 95% CI: 2.00–3.40), and chronic liver disease (OR = 1.51, 95% CI: 1.06–2.17). Acute respiratory distress syndrome (ARDS) (OR = 39.59, 95% CI: 19.99–78.41), shock (OR = 21.50, 95% CI: 10.49–44.06) and acute kidney injury (AKI) (OR = 8.84, 95% CI: 4.34–18.00) were most likely to prevent recovery. In summary, patients with severe conditions had a higher rate of comorbidities and complications than patients with non-severe conditions.

Conclusion

Patients who were male, with advanced age, obesity, a history of smoking, hypertension, diabetes, malignancy, coronary heart disease, hypertension, chronic liver disease, COPD, or CKD are more likely to develop severe COVID-19 symptoms. ARDS, shock and AKI were thought to be the main hinderances to recovery.

For More Information: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250602

The incidence, clinical characteristics, and outcomes of pneumothorax in hospitalized COVID-19 patients: A systematic review

Authors: Woon H. Chong,a,⁎Biplab K. Saha,bKurt Hu,c and Amit Chopraa

Abstract

Background

Pneumothorax has been frequently described as a complication of COVID-19 infections.

Objective

In this systematic review, we describe the incidence, clinical characteristics, and outcomes of COVID-19-related pneumothorax.

Methods

Studies were identified through MEDLINE, Pubmed, and Google Scholar databases using keywords of “COVID-19,” “SARS-CoV-2,” “pneumothorax,” “pneumomediastinum,” and “barotrauma” from January 1st, 2020 to January 30th, 2021.

Results

Among the nine observational studies, the incidence of pneumothorax is low at 0.3% in hospitalized COVID-19 patients. However, the incidence of pneumothorax increases to 12.8–23.8% in those requiring invasive mechanical ventilation (IMV) with a high mortality rate up to 100%. COVID-19-related pneumothorax tends to be unilateral and right-sided. Age, pre-existing lung diseases, and active smoking status are not shown to be risk factors. The time to pneumothorax diagnosis is around 9.0–19.6 days from admission and 5.4 days after IMV initiation. COVID-19-related pneumothoraces are associated with prolonged hospitalization, increased likelihood of ICU admission and death, especially among the elderly.

Conclusion

COVID-19-related pneumothorax likely signify greater disease severity. With the high variability of COVID-19-related pneumothorax incidence described, a well-designed study is required to better assess the significance of COVID-19-related pneumothorax.

For More Information: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088235/

Neurologic Manifestations Associations of COVID-19

High-quality epidemiologic data is still urgently needed to better understand neurologic effects of COVID-19.

Authors: Shraddha Mainali, MD; and Marin Darsie, MD VIEW/PRINT PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to prevail as a deadly pandemic and unparalleled global crisis. More than 74 million people have been infected globally, and over 1.6 million have died as of mid-December 2020. The virus transmits mainly through close contacts and respiratory droplets.1 Although the mean incubation period is 3 to 9 days (range, 0-24 days), transmission may occur prior to symptom onset, and about 18% of cases remain asymptomatic.2 The highest rates of coronavirus disease 2019 (COVID-19) in the US have been reported in adults age 18 to 29 and 50 to 64 years, representing 23.8% and 20.5% of cases, respectively.3 Although adults age 65 and older make up only 14.6% of total cases in the US, they account for the vast majority of deaths (79.9%).3 Similarly, men appear to be more vulnerable to the disease, accounting for 69% of intensive care unit (ICU) admissions and 58% of deaths despite nearly equal disease prevalence between men and women.4 In terms of ethnicity, Black Americans account for 15.6% of COVID-19 infections and 19.7% of related deaths, whereas Hispanic/Latinx Americans account for 26.3% of COVID-19 infections and 15.7% of COVID-19 deaths, despite these groups comprising 13.4% and 16.7% of the US population, respectively.3,5

The most commonly reported symptoms are fever, dry cough, fatigue, dyspnea, and anorexia.2 Numerous studies have also reported a spectrum of neurologic dysfunctions, including mild symptoms (eg, headache, anosmia, and dysgeusia) to severe complications (eg, stroke and encephalitis). Despite the prolific reports of neurologic associations and complications of COVID-19 in the face of a raging pandemic with limited resources, there is a significant lack of control for important confounders including the severity of systemic disease, exacerbation or recrudescence of preexisting neurologic disease, iatrogenic complications, and hospital-acquired conditions. Moreover, given the ubiquity of the virus, it is challenging to parse COVID-19–related complications from coexisting conditions. There is an urgent need for high-quality epidemiologic data reflecting COVID-19 prevalence by age, sex, race, and ethnicity on a local, state, national, and international level.

Neurologic and Neuropsychiatric Manifestations of COVID-19

Prevalence estimates of acute neurologic dysfunctions caused by COVID-19 are widely variable, with reports ranging from 3.5% to 36.4%.6 A recent study from Chicago showed that in those with COVID-19 who develop neurologic complications, 42% had neurologic complaints at disease onset, 63% had them during hospitalization, and 82% experienced them during the course of illness.7 Considering the widespread nature of the pandemic, with millions infected globally, neurologic complications of COVID-19 could lead to a significant increase in morbidity, mortality, and economic burden.

People over age 50 with comorbidities (eg, hypertension, diabetes, and cardiovascular disease) are prone to neurologic complications.2,8 Common nonspecific symptoms include headache, fatigue, malaise, myalgia, nausea, vomiting, confusion, anorexia, and dizziness. COVID-19 is known characteristically to affect taste (dysgeusia) and smell (anosmia) in the absence of coryza with variable prevalence estimates ranging from 5% to 85%.9 Since the first report on hospitalized individuals in Wuhan, China, numerous other reports have indicated a spectrum of mild-to-severe neurologic complications, including cerebrovascular events, seizures, demyelinating disease, and encephalitis.8,10-13 As a result of fragmented data from across the world with diverse neurologic manifestations and multiple potential mechanisms of injury, the classification of neurologic dysfunctions in COVID-19 is complex and varies across the literature. Here we present 2 pragmatic classification approaches based on 1) type and site of neurologic manifestations disease categories.

For More Information: https://practicalneurology.com/articles/2021-jan/neurologic-manifestations-associations-of-covid-19

Body mass index and severity/fatality from coronavirus disease 2019: A nationwide epidemiological study in Korea

  1. Authors: In Sook Kang , Kyoung Ae Kong Published: June 22, 2021
PLOS

Abstract

Obesity has been reported as a risk factor for severe coronavirus disease 2019 (COVID-19) in recent studies. However, the relationship between body mass index (BMI) and COVID-19 severity and fatality are unclear.

Research design and methods

This study included 4,141 COVID-19 patients who were released from isolation or had died as of April 30, 2020. This nationwide data was provided by the Korean Centers for Disease Control and Prevention Agency. BMI was categorized as follows; < 18.5 kg/m2, 18.5–22.9 kg/m2, 23.0–24.9 kg/m2, 25.0–29.9 kg/m2, and ≥ 30 kg/m2. We defined a fatal illness if the patient had died.

Results

Among participants, those with a BMI of 18.5–22.9 kg/m2 were the most common (42.0%), followed by 25.0–29.9 kg/m2 (24.4%), 23.0–24.9 kg/m2 (24.3%), ≥ 30 kg/m2 (4.7%), and < 18.5 kg/m2 (4.6%). In addition, 1,654 (41.2%) were men and 3.04% were fatalities. Multivariable analysis showed that age, male sex, BMI < 18.5 kg/m2, BMI ≥ 25 kg/m2, diabetes mellitus, chronic kidney disease, cancer, and dementia were independent risk factors for fatal illness. In particular, BMI < 18.5 kg/m2 (odds ratio [OR] 3.97, 95% CI 1.77–8.92), 25.0–29.9 kg/m2 (2.43, 1.32–4.47), and ≥ 30 kg/m2 (4.32, 1.37–13.61) were found to have higher ORs than the BMI of 23.0–24.9 kg/m2 (reference). There was no significant difference between those with a BMI of 18.5–22.9 kg/m2 (1.59, 0.88–2.89) and 23.0–24.9 kg/m2.

Conclusions

This study demonstrated a non-linear (U-shaped) relationship between BMI and fatal illness. Subjects with a BMI of < 18.5 kg/m2 and those with a BMI ≥ 25 kg/m2 had a high risk of fatal illness. Maintaining a healthy weight is important not only to prevent chronic cardiometabolic diseases, but also to improve the outcome of COVID-19.

For More Information: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253640

Age-dependent appearance of SARS-CoV-2 entry sites in mouse chemosensory systems reflects COVID-19 anosmia-ageusia symptoms

Authors: Julien Brechbühl,Ana Catarina Lopes,Dean Wood,Sofiane Bouteiller,Aurélie de Vallière,Chantal Verdumo, and Marie-Christine Broillet

Abstract

COVID-19 pandemic has given rise to a collective scientific effort to study its viral causing agent SARS-CoV-2. Research is focusing in particular on its infection mechanisms and on the associated-disease symptoms. Interestingly, this environmental pathogen directly affects the human chemosensory systems leading to anosmia and ageusia. Evidence for the presence of the cellular entry sites of the virus, the ACE2/TMPRSS2 proteins, has been reported in non-chemosensory cells in the rodent’s nose and mouth, missing a direct correlation between the symptoms reported in patients and the observed direct viral infection in human sensory cells. Here, mapping the gene and protein expression of ACE2/TMPRSS2 in the mouse olfactory and gustatory cells, we precisely identify the virus target cells to be of basal and sensory origin and reveal the age-dependent appearance of viral entry-sites. Our results propose an alternative interpretation of the human viral-induced sensory symptoms and give investigative perspectives on animal models.

Introduction

The Corona Virus Disease 2019 (COVID-19) has federated worldwide scientific efforts for understanding the viral epidemiological mechanisms of the coronavirus 2 (SARS-CoV-2) that causes this severe acute respiratory syndrome. In humans, the viral syndrome is characterized by an increased mortality rate in aged and/or comorbidity patients associated with the upper respiratory infection symptoms, such as severe respiratory distress13. In addition to its major impact, COVID-19 is associated by its direct alteration of human olfaction and gustation, in absence of substantial nasal inflammation or coryzal signs, resulting to anosmia and ageusia in up to 77% of the patients47. While these sensory symptoms are well established and intensely affect everyday behaviors8,9, the precise related mechanisms remain elusive10.

The target cells of the virus share a molecular signature: the concomitant cellular expression of the angiotensin-converting enzyme 2 (ACE2) and of its facilitating transmembrane serine protease 2 (TMPRSS2), which plays a crucial role for the interaction of viral spike proteins with the host cell1113. Paradoxically, these entry sites seem to be lacking in sensory cells1418, while a direct SARS-CoV-2 contamination has been observed both in humans and rodents19,20, requesting further investigations to explain the sensory-associated symptoms2124. Therefore, the characterization of the animal model is necessary prior to its use to understand the causality underling the viral-induced sensory symptoms.

The use of mice is indeed limited for epidemiological studies due to their absence of hands, which, with aerosols, are the foremost passages of interindividual viral transmission25, as well as their published lack of SARS-CoV-2 ACE2-spike protein affinity26,27. Nevertheless, the ease of production of genetically modified mice and their scientific availability, as well as their well-studied and specialized chemosensory systems2830, make them a valuable ally for the development of potential prophylactic and protective treatments related to these sensory symptoms.

Thus, we aimed here at characterizing the potential viral entry sites across mouse sensory systems. We found SARS-CoV-2 entry cells to be of different origins depending on the sensory systems. In summary, the virus could target cells involved in tissue regulation such as the supporting cells of the olfactory receptor neurons and the regenerative basal cells but also, specifically, the chemosensory cells of both gustatory and olfactory systems. We finally revealed that the emergence of viral entry sites in sensory and basal cells only occurs with age, which could explain both, the observed COVID-19 long-lasting effects and the age-dependent sensory-symptomatology in human.

For More Information: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282876/

Individual differences in adolescent mental health during COVID-19: The importance of peer relationship quality

By DocWire News Featured Reading -August 11, 2021

Neuron. 2021 Aug 9:S0896-6273(21)00571-7. doi: 10.1016/j.neuron.2021.07.027. Online ahead of print.

ABSTRACT

Lockdowns and school closures deprive adolescents of typical social interactions. In this NeuroView, we explore how the quality of existing peer relationships might moderate-both positively and negatively-the impact of these restrictions on adolescent mental health, and we highlight the importance of individual differences.

For More Information: https://www.docwirenews.com/abstracts/individual-differences-in-adolescent-mental-health-during-covid-19-the-importance-of-peer-relationship-quality/

Lack of antibodies against seasonal coronavirus OC43 nucleocapsid protein identifies patients at risk of critical COVID-19

Authors: MartinDugasa1TanjaGrote-Westrickb1UtaMerledMichaelaFontenaylmAndreas E.KremerhFrankHansesijRichardVollenbergcEvaLorentzenbShilpaTiwari-BecklerdJérômeDucheminlSyrineEllouzelMarcelVetterhJuliaFürsthPhilippSchusterkTobiasBrixaClaudia M.DenkingerfgCarstenMüller-TidoweHartmutSchmidtcJoachimKühnb1

Highlights

Does prior infection with seasonal human coronavirus OC43 protect against critical COVID-19?•

Findings: In an international multi-center study inpatients without anti-HCoV OC43 NP antibodies had an increased risk of critical disease.•

Meaning: Prior infections with seasonal HCoV OC43 have a protective effect against critical COVID-19.

Abstract

Background

The vast majority of COVID-19 patients experience a mild disease. However, a minority suffers from critical disease with substantial morbidity and mortality.

Objectives

To identify individuals at risk of critical COVID-19, the relevance of a seroreactivity against seasonal human coronaviruses was analyzed.

Methods

We conducted a multi-center non-interventional study comprising 296 patients with confirmed SARS-CoV-2 infections from four tertiary care referral centers in Germany and France. The ICU group comprised more males, whereas the outpatient group contained a higher percentage of females. For each patient, the serum or plasma sample obtained closest after symptom onset was examined by immunoblot regarding IgG antibodies against the nucleocapsid protein (NP) of HCoV 229E, NL63, OC43 and HKU1.

Results

Median age was 60 years (range 18-96). Patients with critical disease (n=106) had significantly lower levels of anti-HCoV OC43 nucleocapsid protein (NP)-specific antibodies compared to other COVID-19 inpatients (p=0.007). In multivariate analysis (adjusted for age, sex and BMI), OC43 negative inpatients had an increased risk of critical disease (adjusted odds ratio (AOR) 2.68 [95% CI 1.09 – 7.05]), higher than the risk by increased age or BMI, and lower than the risk by male sex. A risk stratification based on sex and OC43 serostatus was derived from this analysis.

Conclusions

Our results suggest that prior infections with seasonal human coronaviruses can protect against a severe course of COVID-19. Therefore, anti-OC43 antibodies should be measured for COVID-19 inpatients and considered as part of the risk assessment for each patient. Hence, we expect individuals tested negative for anti-OC43 antibodies to particularly benefit from vaccination against SARS-CoV-2, especially with other risk factors prevailing.

For More Information: https://www.sciencedirect.com/science/article/pii/S1386653221001141

Lack of antibodies against seasonal coronavirus OC43 nucleocapsid protein identifies patients at risk of critical COVID-19

Authors: Martin Dugas 1Tanja Grote-Westrick 2Uta Merle 3Michaela Fontenay 4Andreas E Kremer 5Frank Hanses 6Richard Vollenberg 7Eva Lorentzen 8Shilpa Tiwari-Heckler 9Jérôme Duchemin 10Syrine Ellouze 11Marcel Vetter 12Julia Fürst 13Philipp Schuster 14Tobias Brix 15Claudia M Denkinger 16Carsten Müller-Tidow 17Hartmut Schmidt 18Phil-Robin Tepasse 19Joachim Kühn 20

Abstract

Background: The vast majority of COVID-19 patients experience a mild disease. However, a minority suffers from critical disease with substantial morbidity and mortality.

Objectives: To identify individuals at risk of critical COVID-19, the relevance of a seroreactivity against seasonal human coronaviruses was analyzed.

Methods: We conducted a multi-center non-interventional study comprising 296 patients with confirmed SARS-CoV-2 infections from four tertiary care referral centers in Germany and France. The ICU group comprised more males, whereas the outpatient group contained a higher percentage of females. For each patient, the serum or plasma sample obtained closest after symptom onset was examined by immunoblot regarding IgG antibodies against the nucleocapsid protein (NP) of HCoV 229E, NL63, OC43 and HKU1.

Results: Median age was 60 years (range 18-96). Patients with critical disease (n=106) had significantly lower levels of anti-HCoV OC43 nucleocapsid protein (NP)-specific antibodies compared to other COVID-19 inpatients (p=0.007). In multivariate analysis (adjusted for age, sex and BMI), OC43 negative inpatients had an increased risk of critical disease (adjusted odds ratio (AOR) 2.68 [95% CI 1.09 – 7.05]), higher than the risk by increased age or BMI, and lower than the risk by male sex. A risk stratification based on sex and OC43 serostatus was derived from this analysis.

Conclusions: Our results suggest that prior infections with seasonal human coronaviruses can protect against a severe course of COVID-19. Therefore, anti-OC43 antibodies should be measured for COVID-19 inpatients and considered as part of the risk assessment for each patient. Hence, we expect individuals tested negative for anti-OC43 antibodies to particularly benefit from vaccination against SARS-CoV-2, especially with other risk factors prevailing.

For More Information: https://pubmed.ncbi.nlm.nih.gov/33965698/