Acute inflammatory demyelinating polyneuropathy or Guillain-Barré syndrome associated with COVID-19: a case report

Journal of Medical Case Reports volume 15, Article number: 219 (2021) 

Abstract

Background

Coronavirus disease 2019 (COVID-19) is a global pandemic. The disease, typically characterized by bilateral pulmonary infiltrates and profound elevation of inflammatory markers, can range in severity from mild or asymptomatic illness to a lethal cytokine storm and respiratory failure. A number of recognized complications of COVID-19 infection are described in the literature. Common neurological complications include headache and anosmia. Guillain-Barré syndrome (GBS) is an uncommon complication described in isolated case reports. However, a causal relationship has yet to be established. This case report adds to the growing body of evidence that GBS is a potential COVID-19 complication.

Case presentation

A 70-year-old Caucasian woman with recently diagnosed COVID-19 infection presented to the emergency department with 4 days of gradually worsening ascending lower extremity weakness. Exam revealed bilateral lower extremity weakness, mute reflexes, and sensory loss. Soon after starting intravenous administration of immunoglobulin (IVIG), the patient developed respiratory distress, eventually requiring intubation. She remained intubated for the duration of her IVIG treatment. After five rounds of treatment, the patient was successfully extubated and transferred to acute rehab. Following 4 weeks of intense physical therapy, she was able to walk with assistance on room air.

Conclusion

At the present time, this is one of the few reports of acute inflammatory demyelinating polyneuropathy (AIDP) or GBS associated with COVID-19 in the United States. It is unclear whether a causal relationship exists given the nature of the syndrome. However, in light of the growing number of reported cases, physicians should be aware of this possible complication when evaluating COVID-19 patients.

For More Information: https://jmedicalcasereports.biomedcentral.com/articles/10.1186/s13256-021-02831-4

COVID-19 and emerging spinal cord complications: A systematic review

Authors: Ritwick Mondal,aShramana Deb,bGourav Shome,cUpasana Ganguly,aDurjoy Lahiri,a,d,⁎ and Julián Benito-Leóne,f,g,⁎⁎ Mult Scler Relat Disord. 2021 Jun; 51: 102917.Published online 2021 Mar 21. doi: 10.1016/j.msard.2021.102917

Abstract

Background

Spinal cord complications associated with coronavirus infectious disease of 2019 (COVID-19) are being widely reported. The purpose of this systematic review was to summarize so far available pieces of evidence documenting de novo novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) mediated spinal cord demyelinating diseases. Indeed, the spinal demyelinating disorders that have been reported in those patients who have suffered from COVID-19 rather than on the people already living with diagnosed or undiagnosed primary demyelinating disorders.

Methods

We used the existing PRISMA consensus statement. Data were collected from PubMed, NIH Litcovid, EMBASE and Cochrane library databases, as well as Pre-print servers (medRxiv, bioRxiv, and pre-preints.org), until September 10, 2020, using pre-specified searching strategies.

Results

The 21 selected articles were all case reports and included 11 (52%) men and 10 (48%) women. The mean age was of 46.7 ± 18.0. The neurological manifestations included weakness, sensory deficit, autonomic dysfunction and ataxia. In most cases, elevated cerebrospinal fluid protein as well as lymphocytic pleocytosis were found. SARS-CoV-2 was detected in five (24%) patients, meanwhile in 13 (62%) patients, the testing was negative. Testing was not performed in two cases and, in one, data were unavailable. Nearly half of the cases (N = 9) were associated with isolated long extensive transverse myelitis (LETM), whereas a combination of both LETM and patchy involvement was found in two. Only five patients had isolated short segment involvement and two patchy involvement. Furthermore, concomitant demyelination of both brain and spine was reported in six patients. Concerning the prognosis, most of the patients improved and the mortality rate was low (N = 2, <10%).

Conclusion

Spinal cord demyelination should be added to the plethora of immune mediated neurologic complications associated with COVID-19.

For More Information: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7981271/

Coronavirus and the Nervous System

What is SARS-CoV-2 and COVID-19?

Coronaviruses are common causes of usually mild to moderate upper respiratory tract illnesses like the common cold, with symptoms that may include runny nose, fever, sore throat, cough, or a general feeling of being ill. However, a new coronavirus called Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) emerged and spread to cause the COVID-19 pandemic.

COVID-19, which means Coronavirus disease 2019, is an infectious disease that can affect people of all ages in many ways. It is most dangerous when the virus spreads from the upper respiratory tract into the lungs to cause viral pneumonia and lung damage leading to Acute Respiratory Distress Syndrome (ARDS). When severe, this impairs the body’s ability to maintain critical levels of oxygen in the blood stream—which can cause multiple body systems to fail and can be fatal.

What do we know about the effects of SARS-CoV-2 and COVID-19 on the nervous system?

Much of the research to date has focused on the acute infection and saving lives. These strategies have included preventing infection with vaccines, treating COVID-19 symptoms with medicines or antibodies, and reducing complications in infected individuals.

Research shows the many neurological symptoms of COVID-19 are likely a result of the body’s widespread immune response to infection rather than the virus directly infecting the brain or nervous system. In some people, the SARS-CoV-2 infection causes an overreactive response of the immune system which can also damage body systems. Changes in the immune system have been seen in studies of the cerebrospinal fluid, which bathes the brain, in people who have been infected by SARS-CoV-2. This includes the presence of antibodies—proteins made by the immune system to fight the virus—that may also react with the nervous system. Although still under intense investigation, there is no evidence of widespread viral infection in the brain. Scientists are still learning how the virus affects the brain and other organs in the long-term. Research is just beginning to focus on the role of autoimmune reactions and other changes that cause the set of symptoms that some people experience after their initial recovery. It is unknown if injury to the nervous system or other body organs cause lingering effects that will resolve over time, or whether COVID-19 infection sets up a more persistent or even chronic disorder.

What are the immediate (acute) effects of SARS-CoV-2 and COVID-19 on the brain?

Most people infected with SARS-CoV-2 virus will have no or mild to moderate symptoms associated with the brain or nervous system. However, most individuals hospitalized due to the virus do have symptoms related to the brain or nervous system, most commonly including muscle aches, headaches, dizziness, and altered taste and smell. Some people with COVID-19 either initially have, or develop in the hospital, a dramatic state of confusion called delirium. Although rare, COVID-19 can cause seizures or major strokes. Muscular weakness, nerve injury, and pain syndromes are common in people who require intensive care during infections. There are also very rare reports of conditions that develop after SARS-CoV-2 infection, as they sometimes do with other types of infections. These disorders of inflammation in the nervous system include Guillain-Barré syndrome (which affects nerves), transverse myelitis (which affects the spinal cord), and acute necrotizing leukoencephalopathy (which affects the brain).

Bleeding in the brain, weakened blood vessels, and blood clots in acute infection

The SARS-CoV-2 virus attaches to a specific molecule (called a receptor) on the surface of cells in the body. This molecule is concentrated in the lung cells but is also present on certain cells that line blood vessels in the body. The infection causes some arteries and veins—including those in the brain—to  become thin, weaken, and leak. Breaks in small blood vessels have caused bleeding in the brain (so-called microbleeds) in some people with COVID-19 infection. Studies in people who have died due to COVID-19 infection show leaky blood vessels in different areas of the brain that allow water and a host of other molecules as well as blood cells that are normally excluded from the brain to move from the blood stream into the brain. This leak, as well as the resulting inflammation around blood vessels, can cause multiple small areas of damage. COVID-19 also causes blood cells to clump and form clots in arteries and veins throughout the body. These blockages reduce or block the flow of blood, oxygen, and nutrients that cells need to function and can lead to a stroke or heart attack.

stroke is a sudden interruption of continuous blood flow to the brain. A stroke occurs either when a blood vessel in the brain becomes blocked or narrowed or when a blood vessel bursts and spills blood into the brain. Strokes can damage brain cells and cause permanent disability. The blood clots and vascular (relating to the veins, capillaries, and arteries in the body) damage from COVID-19 can cause strokes even in young healthy adults who do not have the common risk factors for stroke.

COVID-19 can cause blood clots in other parts of the body, too. A blood clot in or near the heart can cause a heart attack. A heart attack orInflammation in the heart, called myocarditis, can causeheart failure, and reduce the flow of blood to other parts of the body. A blood clot in the lungs can impair breathing and cause pain. Blood clots also can damage the kidneys and other organs.

Low levels of oxygen in the body (called hypoxia) can permanently damage the brain and other vital organs in the body. Some hospitalized individuals require artificial ventilation on respirators. To avoid chest movements that oppose use of the ventilator it may be necessary to temporarily “paralyze” the person and use anesthetic drugs to put the individual to sleep. Some individuals with severe hypoxia require artificial means of bringing oxygen into their blood stream, a technique called extra corporeal membrane oxygenation (ECMO). Hypoxia combined with these intensive care unit measure generally cause cognitive disorders that show slow recovery.

Diagnostic imaging of some people who have had COVID-19 show changes in the brain’s white matter that contains the long nerve fibers, or “wires,” over which information flows from one brain region to another. These changes may be due to a lack of oxygen in the brain, the inflammatory immune system response to the virus, injury to blood vessels, or leaky blood vessels. This “diffuse white matter disease” might contribute to cognitive difficulties in people with COVID-19. Diffuse white matter disease is not uncommon in individuals requiring intensive hospital care but it not clear if it also occurs in those with mild to moderate severity of COVID-19 illness.

For More Information: https://www.ninds.nih.gov/Current-Research/Coronavirus-and-NINDS/nervous-system

Pathological findings in organs and tissues of patients with COVID-19: A systematic review

Authors: Sasha Peiris 1 2Hector Mesa 3Agnes Aysola 4Juan Manivel 5Joao Toledo 1 2Marcio Borges-Sa 6Sylvain Aldighieri 1 2Ludovic Reveiz 2 7

Abstract

Background: Coronavirus disease (COVID-19) is the pandemic caused by SARS-CoV-2 that has caused more than 2.2 million deaths worldwide. We summarize the reported pathologic findings on biopsy and autopsy in patients with severe/fatal COVID-19 and documented the presence and/or effect of SARS-CoV-2 in all organs.

Methods and findings: A systematic search of the PubMed, Embase, MedRxiv, Lilacs and Epistemonikos databases from January to August 2020 for all case reports and case series that reported histopathologic findings of COVID-19 infection at autopsy or tissue biopsy was performed. 603 COVID-19 cases from 75 of 451 screened studies met inclusion criteria. The most common pathologic findings were lungs: diffuse alveolar damage (DAD) (92%) and superimposed acute bronchopneumonia (27%); liver: hepatitis (21%), heart: myocarditis (11.4%). Vasculitis was common only in skin biopsies (25%). Microthrombi were described in the placenta (57.9%), lung (38%), kidney (20%), Central Nervous System (CNS) (18%), and gastrointestinal (GI) tract (2%). Injury of endothelial cells was common in the lung (18%) and heart (4%). Hemodynamic changes such as necrosis due to hypoxia/hypoperfusion, edema and congestion were common in kidney (53%), liver (48%), CNS (31%) and GI tract (18%). SARS-CoV-2 viral particles were demonstrated within organ-specific cells in the trachea, lung, liver, large intestine, kidney, CNS either by electron microscopy, immunofluorescence, or immunohistochemistry. Additional tissues were positive by Polymerase Chain Reaction (PCR) tests only. The included studies were from numerous countries, some were not peer reviewed, and some studies were performed by subspecialists, resulting in variable and inconsistent reporting or over statement of the reported findings.

Conclusions: The main pathologic findings of severe/fatal COVID-19 infection are DAD, changes related to coagulopathy and/or hemodynamic compromise. In addition, according to the observed organ damage myocarditis may be associated with sequelae.

For More Information: https://pubmed.ncbi.nlm.nih.gov/33909679/