Analysis of the Study of the Expression of Apoptosis Markers (CD95) and Intercellular Adhesion Markers (CD54) in Healthy Individuals and Patients Who Underwent COVID-19 When Using the Drug Mercureid

Authors: Sergey N Gusev1*, Velichko LN2, Bogdanova AV2, Khramenko NI2, Konovalova NV2 Published Date: 26-08-2021


SARS-CoV-2, the pathogen, which is responsible for coronavirus disease 2019 (COVID-19), has caused unprecedented morbidity and mortality worldwide. Scientific and clinical evidence testifies about long-term COVID-19 effects that can affect many organ systems. Cellular damage, overproduction of proinflammatory cytokines and procoagulant abnormalities caused by SARS-CoV-2 infection may lead to these consequences. After suffering from COVID-19, a negative PCR test is only the beginning of a difficult path to full recovery. 61 % of patients will continue to have the signs of post-covid syndrome with the risk of developing serious COVID-19 health complications for a long time. Post-COVID syndrome is an underestimated large-scale problem that can lead to the collapse of the healthcare system in the nearest future.

The treatment and prevention of post-covid syndrome require integrated rather than organ or disease specific approaches and there is an urgent need to conduct a special research to establish the risk factors.

For this purpose, we studied the expression of markers of apoptosis (CD95) and intercellular adhesion (CD54) in healthy individuals and patients who underwent COVID-19, as well as the efficacy of the drug Mercureid for the treatment of post-covid syndrome.

The expression level of the apoptosis marker CD95 in patients who underwent COVID-19 is 1.7-2.5 times higher than the norm and the intercellular adhesion marker CD54 is 2.9-4.4 times higher. This fact indicates a persistent high level of dysfunctional immune response in the short term after recovery. The severity of the expression of the intercellular adhesion molecule (ICAM-1, CD54) shows the involvement of the endothelium of the vascular wall in the inflammatory process as one of the mechanisms of the pathogenesis of post-covid syndrome.

The use of Mercureid made it possible to reduce the overexpression of CD95 in 73.4 % of patients that led to the restoration of the number of CD4+/CD8+ T-cells, which are crucial in the restoration of functionally active antiviral and antitumor immunity of patients. Also, the use of Mercureid led to a normalization of ICAM-1 (CD54) levels in 75.8 % of patients.

The pharmacological properties of the new targeted immunotherapy drug Mercureid provide new therapeutic opportunities for the physician to influence a number of therapeutic targets, such as CD95, ICAM-1 (CD54), to reduce the risk of post-COVID complications.

For More Information:

Cytokeratin 18 cell death assays as biomarkers for quantification of apoptosis and necrosis in COVID-19: a prospective, observational study

Authors: Brandon Michael Henry1 Cheruiyot2, Stefanie W Benoit3,4, Fabian Sanchis-Gomar5,6 Lippi7, Justin Benoit8 Correspondence to Dr Brandon Michael Henry, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA;


Background The mechanism by which SARS-CoV-2 triggers cell damage and necrosis are yet to be fully elucidated. We sought to quantify epithelial cell death in patients with COVID-19, with an estimation of relative contributions of apoptosis and necrosis.

Methods Blood samples were collected prospectively from adult patients presenting to the emergency department. Circulating levels of caspase-cleaved (apoptosis) and total cytokeratin 18 (CK-18) (total cell death) were determined using M30 and M65 enzyme assays, respectively. Intact CK-18 (necrosis) was estimated by subtracting M30 levels from M65.

Results A total of 52 COVID-19 patients and 27 matched sick controls (with respiratory symptoms not due to COVID-19) were enrolled. Compared with sick controls, COVID-19 patients had higher levels of M65 (p = 0.046, total cell death) and M30 (p = 0.0079, apoptosis). Hospitalised COVID-19 patients had higher levels of M65 (p= 0.014) and intact CK-18 (p= 0.004, necrosis) than discharged patients. Intensive care unit (ICU)-admitted COVID-19 patients had higher levels of M65 (p= 0.004), M30 (p= 0.004) and intact CK-18 (p= 0.033) than hospitalised non-ICU admitted patients. In multivariable logistic regression, elevated levels of M65, M30 and intact CK-18 were associated with increased odds of ICU admission (OR=22.05, p=0.014, OR=19.71, p=0.012 and OR=14.12, p=0.016, respectively).

Conclusion Necrosis appears to be the main driver of hospitalization, whereas apoptosis and necrosis appear to drive ICU admission. Elevated levels CK-18 levels are independent predictors of severe disease, and could be useful for risk stratification of COVID-19 patients and in assessment of therapeutic efficacy in early-phase COVID-19 clinical trials.

For More Information:

Inflammasome activation at the crux of severe COVID-19

Authors: Setu M. Vora,1,2Judy Lieberman,2,3 and Hao Wu1,2


The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), results in life-threatening disease in a minority of patients, especially elderly people and those with co-morbidities such as obesity and diabetes. Severe disease is characterized by dysregulated cytokine release, pneumonia and acute lung injury, which can rapidly progress to acute respiratory distress syndrome, disseminated intravascular coagulation, multisystem failure and death. However, a mechanistic understanding of COVID-19 progression remains unclear. Here we review evidence that SARS-CoV-2 directly or indirectly activates inflammasomes, which are large multiprotein assemblies that are broadly responsive to pathogen-associated and stress-associated cellular insults, leading to secretion of the pleiotropic IL-1 family cytokines (IL-1β and IL-18), and pyroptosis, an inflammatory form of cell death. We further discuss potential mechanisms of inflammasome activation and clinical efforts currently under way to suppress inflammation to prevent or ameliorate severe COVID-19.


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, has so far infected more than 190 million people and caused death of more than 4.1 million people worldwide. The virus primarily infects the respiratory tract, causing fever, sore throat, anosmia and dyspnoea, but its tissue tropism still remains to be fully understood. As many as 10–15% of patients develop severe pneumonia, with some cases progressing to hypoxia and acute respiratory distress syndrome (ARDS), which requires mechanical ventilation in a critical care setting and has high mortality. Patients can also develop multi-organ failure, acute kidney injury and disseminated intravascular coagulation, among a host of other disorders111. Aside from supportive care, only a few treatments have been approved for COVID-19, and their reduction of mortality has been limited1214. Although several vaccines against SARS-CoV-2 have been approved and are being administered internationally, there will still be a significant number of infections owing to people who are not vaccinated in regions with inadequate access or acceptance of vaccination. In addition, while global vaccination efforts strive to meet the challenge of ending the pandemic, the appearance of immune-evasive viral variants and the unlikelihood of reaching immediate herd immunity underscore the continued need for additional treatments mitigating disease progression1519.

Most researchers agree that an inappropriate hyperinflammatory response lies at the root of many severe cases of COVID-19, driven by overexuberant inflammatory cytokine release. Consistently, co-morbidities, such as obesity, diabetes, heart disease, hypertension and ageing, which are prognostic of poor outcome, are associated with high basal inflammation7,11,20,21. It has been proposed since the beginning of the pandemic that these co-morbidities and the ensuing hyperinflammatory response may be aetiologically linked through overactive inflammasome signaling, which may account for the association of these co-morbidities with severe COVID-19 in the context of chronic inflammation as well as for COVID-19 progression in the context of a robust acute inflammatory response to infection2229. However, many of the studies that seek to understand the immune response to SARS-CoV-2 are based on RNA sequencing, often of thawed cells, and infected, activated or dying cells do not survive freeze–thaw well, which could skew results. Moreover, inflammasome activation does not directly induce transcriptional responses, and its detection is less straightforward than that of most other signaling pathways. Nonetheless, several studies are now accumulating that support direct (infection-induced) and indirect inflammasome activation and the critical role of inflammasomes in severe COVID-19. Here we discuss the available evidence, potential mechanisms and the implications for therapy.

Key to inflammation and innate immunity, are large, micrometer-scale multiprotein cytosolic complexes that assemble in response to pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) and trigger proinflammatory cytokine release as well as pyroptosis, a proinflammatory lytic cell death30,31 (Fig. 1). Upon activation by PAMPs or DAMPs, canonical inflammasome sensors — mainly in monocytes, macrophages and barrier epithelial cells — oligomerize and recruit the adaptor apoptosis-associated speck-like protein containing a CARD (ASC) to form inflammasome specks, within which the inflammatory caspase 1 is recruited and activated. Inflammasome sensors are activated in response to different triggers and differ in their overall specificities to PAMPs or DAMPs. NLRP3, the most broadly activated inflammasome sensor and a member of the nucleotide-binding domain- and leucine-rich repeat-containing protein (NLR) family, responds to an array of insults to the cell that cause cytosolic K+ efflux, Ca2+ cytosolic influx or release of mitochondrial reactive oxygen species (ROS)31,32. These insults include extracellular ATP, membrane permeabilization by pore-forming toxins and large extracellular aggregates such as uric acid crystals, cholesterol crystals and amyloids30. Other sensors, such as AIM2 and NLRC4, are tuned to recognize specific PAMPs and DAMPs, such as cytosolic double-stranded DNA and bacterial proteins, respectively31. In a parallel pathway, the mouse inflammatory caspase 11 and human caspase 4 and caspase 5 sense PAMPs and DAMPs such as bacterial lipopolysaccharide (LPS) that gain cytosolic access and endogenous oxidized phospholipids, leading directly to membrane damage or pyroptosis, and secondary K+ efflux followed by noncanonical NLRP3 inflammasome activation3336.

For More Information: